HDU_5533_Dancing Stars on Me

本文介绍了一种用于判断给定点集是否能构成正多边形的算法。该算法通过计算三点确定的圆心和半径来判断所有点是否位于同一圆周上,并进一步验证各边长度是否一致。

Dancing Stars on Me

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2002    Accepted Submission(s): 1168


Problem Description
The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.
 

 

Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.

1T300
3n100
10000xi,yi10000
All coordinates are distinct.
 

 

Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 

 

Sample Input
3 3 0 0 1 1 1 0 4 0 0 0 1 1 0 1 1 5 0 0 0 1 0 2 2 2 2 0
 

 

Sample Output
NO YES NO
 

 

Source
 
  • 给出n个二维坐标点判断能够构成正多边形
  • 考虑正多边形顶点在同一个圆上
  • 任意挑3个点找外心,得到一组圆心和半径
  • 先对于每个点检测和圆心的距离
  • 然后如果距离都相等那就判断每两个相邻点的距离也应该相等
  • n的范围不大n^2复杂度判相邻即可

 

 

 1 #include <iostream>
 2 #include <string>
 3 #include <cstdio>
 4 #include <cstring>
 5 #include <algorithm>
 6 #include <climits>
 7 #include <cmath>
 8 #include <vector>
 9 #include <queue>
10 #include <stack>
11 #include <set>
12 #include <map>
13 using namespace std;
14 typedef long long           LL ;
15 typedef unsigned long long ULL ;
16 const int    maxn = 1e2 + 10   ;
17 const int    inf  = 0x3f3f3f3f ;
18 const int    npos = -1         ;
19 const int    mod  = 1e9 + 7    ;
20 const int    mxx  = 100 + 5    ;
21 const double eps  = 1e-6       ;
22 const double PI   = acos(-1.0) ;
23 
24 struct node{
25     double x, y;
26     node(double a=0LL, double b=0LL){
27         x=a; y=b;
28     }
29 };
30 node vex[maxn], center;
31 node CircumCenter(node a, node b, node c){
32     double a1=b.x-a.x, b1=b.y-a.y, c1=(a1*a1+b1*b1)/2;
33     double a2=c.x-a.x, b2=c.y-a.y, c2=(a2*a2+b2*b2)/2;
34     double d=a1*b2-a2*b1;
35     return node(a.x+(c1*b2-c2*b1)/d,a.y+(a1*c2-a2*c1)/d);
36 }
37 double dis2(node a, node b){
38     return pow(a.x-b.x,2)+pow(a.y-b.y,2);
39 }
40 bool oneLine(node a, node b, node c){
41     return ((b.y-a.y)/(b.x-a.x))==((c.y-a.y)/(c.x-a.x));
42 }
43 int T, n, ans;
44 double R, D[maxn][maxn];
45 int main(){
46     // freopen("in.txt","r",stdin);
47     // freopen("out.txt","w",stdout);
48     while(~scanf("%d",&T)){
49         while(T--){
50             ans=1;
51             scanf("%d",&n);
52             for(int i=1;i<=n;i++)
53                 scanf("%lf %lf",&vex[i].x,&vex[i].y);
54             
55             if(oneLine(vex[1],vex[2],vex[3]))
56                 ans=0;
57             
58             if(ans){
59                 center=CircumCenter(vex[1],vex[2],vex[3]);
60                 R=dis2(center,vex[1]);
61                 for(int i=1;i<=n;i++)
62                     if(dis2(vex[i],center)!=R){
63                         ans=0; break;
64                     }
65             }
66 
67             if(ans){
68                 for(int i=1;i<=n;i++){
69                     D[i][i]=0.0;
70                     for(int j=i+1;j<=n;j++)
71                         D[i][j]=D[j][i]=dis2(vex[i],vex[j]);
72                     sort(D[i]+1,D[i]+1+n);
73                 }
74                 for(int i=2;i<=n;i++)
75                     if(!(D[i][2]==D[i][3] && D[i][2]==D[i-1][2])){
76                         ans=0; break;
77                     }
78             }
79             puts(ans?"YES":"NO");
80         }
81     }
82     return 0;
83 }

 

 

 

转载于:https://www.cnblogs.com/edward108/p/7637297.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值