manacher

本文深入讲解了Manacher算法,一种高效解决回文字符串问题的方法。通过预处理将偶数回文串转换为奇数,确保所有回文串都有对称轴,利用已知回文信息加速查找过程,实现O(n)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

manacher

处理回文字符串问题

回文串是有奇偶的,而偶的回文串没有对称轴

所以要暴力把偶回文串改成奇回文串

ABC
#A#B#C#

就像这样↑

这样就可以保证无论是奇回文还是偶回文都会有一个对称轴


如果一个点已经扩展完了

1437515-20181202084817398-2108360434.png

那它右边的点可以用与其对称的那个点来更新它自己

1437515-20181202084848338-427856661.png

但是如果它的对称点的长度超过了\(L\),那就只能扩展到\(L\)

1437515-20181202084839919-1000984347.png

然后再暴力枚举扩展就行啦
这样的时间复杂度就是\(O(n)\)


void manacher(char* s)
{
    int l=strlen(s),mid=0,r=0; 
    char c[1001];
    c[1]='#';
    for(int i=1;i<=l;i++) 
    {
        c[i*2]=s[i];
        c[i*2+1]='#';
    }
    for(int i=1;i<=l;i++)
    {
        p[i]=r>i ? min(p[2*mid-i],r-i):1;
        while(c[i+p[i]]==c[i-p[i]]) p[i]++;
        
        if(r<i+p[i]) r=i+p[i], mid=i;
        ans=max(ans, p[i]);
    }
}

转载于:https://www.cnblogs.com/ZUTTER/p/10042638.html

【基于QT的调色板】是一个使用Qt框架开发的色彩选择工具,类似于Windows操作系统中常见的颜色选取器。Qt是一个跨平台的应用程序开发框架,广泛应用于桌面、移动和嵌入式设备,支持C++和QML语言。这个调色板功能提供了横竖两种渐变模式,用户可以方便地选取所需的颜色值。 在Qt中,调色板(QPalette)是一个关键的类,用于管理应用程序的视觉样式。QPalette包含了一系列的颜色角色,如背景色、前景色、文本色、高亮色等,这些颜色可以根据用户的系统设置或应用程序的需求进行定制。通过自定义QPalette,开发者可以创建具有独特视觉风格的应用程序。 该调色板功能可能使用了QColorDialog,这是一个标准的Qt对话框,允许用户选择颜色。QColorDialog提供了一种简单的方式来获取用户的颜色选择,通常包括一个调色板界面,用户可以通过滑动或点击来选择RGB、HSV或其他色彩模型中的颜色。 横渐变取色可能通过QGradient实现,QGradient允许开发者创建线性或径向的色彩渐变。线性渐变(QLinearGradient)沿直线从一个点到另一个点过渡颜色,而径向渐变(QRadialGradient)则以圆心为中心向外扩散颜色。在调色板中,用户可能可以通过滑动条或鼠标拖动来改变渐变的位置,从而选取不同位置的颜色。 竖渐变取色则可能是通过调整QGradient的方向来实现的,将原本水平的渐变方向改为垂直。这种设计可以提供另一种方式来探索颜色空间,使得选取颜色更为直观和便捷。 在【colorpanelhsb】这个文件名中,我们可以推测这是与HSB(色相、饱和度、亮度)色彩模型相关的代码或资源。HSB模型是另一种常见且直观的颜色表示方式,与RGB或CMYK模型不同,它以人的感知为基础,更容易理解。在这个调色板中,用户可能可以通过调整H、S、B三个参数来选取所需的颜色。 基于QT的调色板是一个利用Qt框架和其提供的色彩管理工具,如QPalette、QColorDialog、QGradient等,构建的交互式颜色选择组件。它不仅提供了横竖渐变的色彩选取方式,还可能支持HSB色彩模型,使得用户在开发图形用户界面时能更加灵活和精准地控制色彩。
标题基于Spring Boot的二手物品交易网站系统研究AI更换标题第1章引言阐述基于Spring Boot开发二手物品交易网站的研究背景、意义、现状及本文方法与创新点。1.1研究背景与意义介绍二手物品交易的市场需求和Spring Boot技术的适用性。1.2国内外研究现状概述当前二手物品交易网站的发展现状和趋势。1.3论文方法与创新点说明本文采用的研究方法和在系统设计中的创新之处。第2章相关理论与技术介绍开发二手物品交易网站所涉及的相关理论和关键技术。2.1Spring Boot框架解释Spring Boot的核心概念和主要特性。2.2数据库技术讨论适用的数据库技术及其在系统中的角色。2.3前端技术阐述与后端配合的前端技术及其在系统中的应用。第3章系统需求分析详细分析二手物品交易网站系统的功能需求和性能需求。3.1功能需求列举系统应实现的主要功能模块。3.2性能需求明确系统应满足的性能指标和安全性要求。第4章系统设计与实现具体描述基于Spring Boot的二手物品交易网站系统的设计和实现过程。4.1系统架构设计给出系统的整体架构设计和各模块间的交互方式。4.2数据库设计详细阐述数据库的结构设计和数据操作流程。4.3界面设计与实现介绍系统的界面设计和用户交互的实现细节。第5章系统测试与优化说明对系统进行测试的方法和性能优化的措施。5.1测试方法与步骤测试环境的搭建、测试数据的准备及测试流程。5.2测试结果分析对测试结果进行详细分析,验证系统是否满足需求。5.3性能优化措施提出针对系统性能瓶颈的优化建议和实施方案。第6章结论与展望总结研究成果,并展望未来可能的研究方向和改进空间。6.1研究结论概括本文基于Spring Boot开发二手物品交易网站的主要发现和成果。6.2展望与改进讨论未来可能的系统改进方向和新的功能拓展。
1. 用户与权限管理模块 角色管理: 学生:查看个人住宿信息、提交报修申请、查看卫生检查结果、请假外出登记 宿管人员:分配宿舍床位、处理报修申请、记录卫生检查结果、登记晚归情况 管理员:维护楼栋与房间信息、管理用户账号、统计住宿数据、发布宿舍通知 用户操作: 登录认证:对接学校统一身份认证(模拟实现,用学号 / 工号作为账号),支持密码重置 信息管理:学生完善个人信息(院系、专业、联系电话),管理员维护所有用户信息 权限控制:不同角色仅可见对应功能(如学生无法修改床位分配信息) 2. 宿舍信息管理模块 楼栋与房间管理: 楼栋信息:名称(如 "1 号宿舍楼")、层数、性别限制(男 / 女 / 混合)、管理员(宿管) 房间信息:房间号(如 "101")、户型(4 人间 / 6 人间)、床位数量、已住人数、可用状态 设施信息:记录房间内设施(如空调、热水器、桌椅)的配置与完好状态 床位管理: 床位编号:为每个床位设置唯一编号(如 "101-1" 表示 101 房间 1 号床) 状态标记:标记床位为 "空闲 / 已分配 / 维修中",支持批量查询空闲床位 历史记录:保存床位的分配变更记录(如从学生 A 调换到学生 B 的时间与原因) 3. 住宿分配与调整模块 住宿分配: 新生分配:管理员导入新生名单后,宿管可按专业集中、性别匹配等规则批量分配床位 手动分配:针对转专业、复学学生,宿管手动指定空闲床位并记录分配时间 分配结果公示:学生登录后可查看自己的宿舍信息(楼栋、房间号、床位号、室友列表) 调整管理: 调宿申请:学生提交调宿原因(如室友矛盾、身体原因),选择意向宿舍(需有空位) 审批流程:宿管审核申请,通过后执行床位调换,更新双方住宿信息 换宿记录:保存调宿历史(申请人、原床位、新床位、审批人、时间) 4. 报修与安全管理模块 报修管理: 报修提交:学生选择宿舍、设施类型(如 "
<think>嗯,用户想要了解Manacher算法的代码模板或者实现示例。首先,我需要回忆一下Manacher算法的基本思路。记得这个算法是用来找出字符串中最长回文子串的,时间复杂度是线性的O(n)。用户可能已经了解过暴力解法或者其他的优化方法,但想看看具体的代码实现。 首先,用户提到的几个引用中有提到Manacher算法是在BF算法基础上优化的,所以可能需要先简要说明一下这个算法的核心思想。比如预处理字符串,插入特殊字符(比如#)来统一处理奇偶长度的回文,以及利用对称性来减少重复计算。 接下来,用户需要代码模板。根据引用中的示例,比如引用[2]和[4],这两个可能提供了不同的实现方式。需要整合这些代码,确保语法正确,并且符合用户要求的格式,比如独立公式用$$...$$,行内用$...$。不过用户的问题主要是代码示例,所以重点在代码部分。 需要注意的是,用户可能希望代码有注释,解释每一步的作用。比如预处理部分,插入字符,然后初始化变量如max_r和pos,然后遍历处理每个字符的位置。同时,在代码中处理三种情况:对称点的半径是否超过当前右边界,从而决定初始r[i]的值。然后扩展半径,直到无法继续扩展为止,最后更新max_r和pos的位置。 另外,引用[4]中的代码可能用的是另一种实现方式,比如使用辅助变量aux和len来计算半径。不过Manacher的标准实现通常使用一个数组p来记录每个中心的半径,以及维护当前最右的边界和对应的中心。需要确保代码的正确性,比如处理预处理后的字符串,以及最后计算原字符串中的起始位置和长度。 可能还需要比较不同引用的实现方式,选择最符合标准Manacher算法的代码模板。例如,引用[2]中的代码可能更接近标准模板,而引用[4]的代码可能更简略但效率可能不同。需要确保提供的代码是正确的,并且有足够的注释帮助用户理解。 另外,用户可能希望了解如何将预处理后的长度转换回原字符串的位置,比如在示例中的start和maxLen的计算。这部分需要详细解释,因为这是容易出错的地方。例如,预处理后的字符串长度是2n+1,所以原字符串中的起始位置是(start - maxLen)/2,长度是maxLen。 最后,生成相关问题的时候,需要围绕Manacher算法的不同方面,比如预处理的作用、时间复杂度的分析、与暴力解法的区别、应用场景等。这些问题可以帮助用户更深入理解算法。 在检查过程中,需要确保LaTeX格式的正确性,比如行内公式是否正确使用$符号,是否有遗漏。例如,在提到时间复杂度O(n)时,需要用$O(n)$。同时,独立公式如回文半径的计算可能需要用$$...$$,但根据用户示例,可能这部分不需要公式,主要代码展示。 总结步骤:1. 简要介绍Manacher算法;2. 提供代码模板,包括预处理、循环处理每个字符、扩展半径、更新变量;3. 解释代码中的关键步骤;4. 给出应用示例和结果转换;5. 生成相关问题。</think>### Manacher算法实现示例 Manacher算法用于在$O(n)$时间内查找最长回文子串,核心是通过对称性减少重复计算[^1]。以下是代码模板及关键步骤解释: #### 代码模板 ```python def manacher(s): # 预处理,插入特殊字符 t = '#' + '#'.join(s) + '#' n = len(t) p = [0] * n # 记录每个中心的回文半径 max_right = 0 # 当前最大右边界 center = 0 # 最大右边界的中心 max_len = 0 # 最长回文子串长度 start = 0 # 最长回文子串起始位置 for i in range(n): # 根据对称性初始化半径 if i < max_right: mirror = 2 * center - i p[i] = min(max_right - i, p[mirror]) # 尝试扩展半径 left = i - p[i] - 1 right = i + p[i] + 1 while left >= 0 and right < n and t[left] == t[right]: p[i] += 1 left -= 1 right += 1 # 更新最大右边界和对应中心 if i + p[i] > max_right: max_right = i + p[i] center = i # 更新最长回文记录 if p[i] > max_len: max_len = p[i] start = (i - max_len) // 2 # 转换为原字符串的位置 return s[start : start + max_len] ``` #### 关键步骤说明 1. **预处理**:将原字符串$s$转换为$t$,插入分隔符`#`统一奇偶长度回文处理[^2]。例如,`abc`变为`#a#b#c#`。 2. **半径初始化**:若当前点$i$在已知最大右边界内,则利用对称点$j=2 \cdot center - i$的半径初始化$p[i]$[^5]。 3. **扩展半径**:从$p[i]$的初始值出发,向左右扩展,直到字符不匹配。 4. **结果转换**:最长回文子串在原字符串中的起始位置为$(i - max\_len) // 2$,长度为$max\_len$[^4]。 #### 示例运行 输入`abc1234321ab`,预处理后字符串为`#a#b#c#1#2#3#4#3#2#1#a#b#`。算法计算得到最长回文子串为`23432`,对应原字符串的起始位置和长度[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值