POJ 3304 Segments

几何 直线与线段相交

如果每条线段的投影在直线上有重合的点,那么我们通过这一点做一条直线必定会经过所有的线段!!
那么我们考虑把这条直线随意移动到与其中一条线段的某个端点重合,此时直线还是过了所有线段,我们再以该点为中心顺时针或逆时针旋转直线,让这条直线恰好经过另一个线段的某个端点,此时直线一定还是经过所有线段,且经过了其中某两个线段的两个端点。
根据这个思路我们可以枚举所有端点,用叉积判断直线与线段是否相交,复杂度O(n^3)

#include <iostream>
#include <cstdio>
#include <cmath>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
    int X = 0, w = 0; char ch = 0;
    while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
    while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
    return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
    A ans = 1;
    for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
    return ans;
}

const int N = 105;
const double eps = 1e-8;
struct Point { double x,  y;} s[N], e[N];
int n, _;

double mul(const Point &a, const Point &b, const Point &c){
    return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
}

bool check(const Point &a, const Point &b){
    if(fabs(a.x - b.x) < eps && fabs(a.y - b.y) < eps) return false;
    for(int i = 0; i < n; i ++){
        if(mul(a, b, s[i]) * mul(a, b, e[i]) > eps)
            return false;
    }
    return true;
}

int main(){

    while(scanf("%d", &_) != EOF){
        for(; _; _ --){
            scanf("%d", &n);
            for(int i = 0; i < n; i ++){
                scanf("%lf%lf%lf%lf", &s[i].x, &s[i].y, &e[i].x, &e[i].y);
            }
            if(n == 1){
                printf("Yes!\n");
                continue;
            }
            bool flag = false;
            for(int i = 0; i < n; i ++){
                for(int j = i + 1; j < n; j ++){
                    if(check(s[i], s[j]) || check(s[i], e[j]) || check(e[i], e[j]) || check(e[i], s[j])){
                        flag = true;
                        break;
                    }
                }
                if(flag) break;
            }
            if(flag) printf("Yes!\n");
            else printf("No!\n");
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/onionQAQ/p/10742341.html

(1)普通用户端(全平台) 音乐播放核心体验: 个性化首页:基于 “听歌历史 + 收藏偏好” 展示 “推荐歌单(每日 30 首)、新歌速递、相似曲风推荐”,支持按 “场景(通勤 / 学习 / 运动)” 切换推荐维度。 播放页功能:支持 “无损音质切换、倍速播放(0.5x-2.0x)、定时关闭、歌词逐句滚动”,提供 “沉浸式全屏模式”(隐藏冗余控件,突出歌词与专辑封面)。 多端同步:自动同步 “播放进度、收藏列表、歌单” 至所有登录设备(如手机暂停后,电脑端打开可继续播放)。 音乐发现与管理: 智能搜索:支持 “歌曲名 / 歌手 / 歌词片段” 搜索,提供 “模糊匹配(如输入‘晴天’联想‘周杰伦 - 晴天’)、热门搜索词推荐”,结果按 “热度 / 匹配度” 排序。 歌单管理:创建 “公开 / 私有 / 加密” 歌单,支持 “批量添加歌曲、拖拽排序、一键分享到社交平台”,系统自动生成 “歌单封面(基于歌曲风格配色)”。 音乐分类浏览:按 “曲风(流行 / 摇滚 / 古典)、语言(国语 / 英语 / 日语)、年代(80 后经典 / 2023 新歌)” 分层浏览,每个分类页展示 “TOP50 榜单”。 社交互动功能: 动态广场:查看 “关注的用户 / 音乐人发布的动态(如‘分享新歌感受’)、好友正在听的歌曲”,支持 “点赞 / 评论 / 转发”,可直接点击动态中的歌曲播放。 听歌排行:个人页展示 “本周听歌 TOP10、累计听歌时长”,平台定期生成 “全球 / 好友榜”(如 “好友中你本周听歌时长排名第 3”)。 音乐圈:加入 “特定曲风圈子(如‘古典音乐爱好者’)”,参与 “话题讨论(如‘你心中最经典的钢琴曲’)、线上歌单共创”。 (2)音乐人端(创作者中心) 作品管理: 音乐上传:支持 “无损音频(FLAC/WAV)+ 歌词文件(LRC)+ 专辑封面” 上传,填写 “歌曲信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值