hdu 5363 Key Set 快速幂

本文介绍了一种计算特定条件下非空子集数量的方法,特别是当子集元素之和为偶数时的情况。利用快速幂算法进行高效计算,以解决大数运算问题。
Problem Description
soda has a set S with n integers {1,2,,n}. A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of S are key set.
 

 

Input
There are multiple test cases. The first line of input contains an integer T (1T105), indicating the number of test cases. For each test case:

The first line contains an integer n (1n109), the number of integers in the set.
 

 

Output
For each test case, output the number of key sets modulo 1000000007.
 

 

Sample Input
4
1
2
3
4
 

 

Sample Output
0
1
3
7
 
       题意:给出一个数n,表示一个集合中有n个数1-n;找出这个集合的非空子集的个数,并且这些非空子集中所有元素相加为偶数。
       大家都知道n个数的非空子集有2的n次方减1个,那么给原集合中1剔除来,剩下的集合就有2的n-1次方-1个。那么剩下的集合中所有元素相加之和为奇数的加上1就为偶数了,剩下为偶数的就不加1.所以结果就是2的n次方-1。由于这个数据非常大,就要用快速幂。
     快速幂的作用:减少计算时间。在计算中就可以取摸。取摸原理假设 m=x*y;那么 m%n=((x%n)*(y%n))%n;
 
   
#include<cstdio>
#include<cstring>
using namespace std;
long long t,n,ans,y;
int f()
{
    ans=1;
    y=2;;
    n-=1;
    while (n)
    {
        if (n&1) ans=(ans*y)%1000000007;
        y=(y*y)%1000000007;
        n>>=1;
    }
    return ans-1;
}
int main()
{
    scanf("%lld",&t);
    while (t--)
    {
        scanf("%lld",&n);
        printf("%lld\n",f());
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/pblr/p/4713544.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值