HDU 5363 Key Set (快速幂)

本文介绍了一个算法问题,即如何计算一个包含从1到n整数的集合中有多少个非空子集的元素之和为偶数。通过分析得出公式2^(n-1)-1,并提供了一段C语言代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Key Set

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1709    Accepted Submission(s): 905


Problem Description
soda has a set S with n integers {1,2,,n} . A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of S are key set.
 

Input
There are multiple test cases. The first line of input contains an integer T (1T105) , indicating the number of test cases. For each test case:

The first line contains an integer n (1n109) , the number of integers in the set.
 

Output
For each test case, output the number of key sets modulo 1000000007.
 

Sample Input
  
4 1 2 3 4
 

Sample Output
  
0 1 3 7
 

Author
zimpha@zju
 

Source
 

Recommend
wange2014   |   We have carefully selected several similar problems for you:   5746  5745  5744  5743  5742 
 

题意:一个集合元素为1到n,求这个集合有多少个非空子集,并且子集的元素之和为偶数

思路:2 ^ ( n - 1) -1;

纠结为什么我用( 2 ^ n ) / 2 -1.就不对.

#include<stdio.h>
__int64 mod(__int64 a,__int64 b,__int64 c)
{
	__int64 res=1%c;
	__int64 t=a%c;
	while(b)
	{
		if(b%2)
		{
			res=res*t%c;
		}
		t=t*t%c;
	    b=b/2;
	}
	return res;
}
int main()
{
	__int64 t,n;
	scanf("%I64d",&t);
	while(t--)
	{
		scanf("%I64d",&n);
		__int64 ans=mod(2,n-1,1000000007);
		printf("%I64d\n",ans-1);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值