F - Modular Exponentiation

本文解析了一道关于计算m mod 2^n的逆向算法题,通过分析得出当n大于26时,直接输出m;否则进行取模运算。文章提供了完整的AC代码,并附带了解题思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem description

The following problem is well-known: given integers n and m, calculate 2n mod m,

where 2n = 2·2·...·2 (n factors), and x mod y denotes the remainder of division of x by y.

You are asked to solve the "reverse" problem. Given integers n and m, calculate m mod 2n.

Input

The first line contains a single integer n (1 ≤ n ≤ 108).

The second line contains a single integer m (1 ≤ m ≤ 108).

Output

Output a single integer — the value of m mod 2n.

Examples

Input

4
42

Output

10

Input

1
58

Output

0

Input

98765432
23456789

Output

23456789

Note

In the first example, the remainder of division of 42 by 24 = 16 is equal to 10.

In the second example, 58 is divisible by 21 = 2 without remainder, and the answer is 0.

解题思路:由于给出的m最大值为108,于是暴力找出2k>108时的最小值k,解得k=27,所以只要n>26,直接输出m(取模一个比自己大的数字,结果为本身),反之直接取模运算,这样就不会发生数据溢出。(位运算是个好东西,长记性了)

AC代码:

1 #include <bits/stdc++.h>
2 using namespace std;
3 int main()
4 {
5     int n,m;
6     cin>>n>>m;
7     cout<<(n>26?m:m%(1<<n))<<endl;
8     return 0;
9 }

 

转载于:https://www.cnblogs.com/acgoto/p/9103203.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值