Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:
Given the following tree [3,9,20,null,null,15,7]:
3
/ \
9 20
/ \
15 7
Return true.
Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]:
1
/ \
2 2
/ \
3 3
/ \
4 4
Return false.
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int depth(TreeNode *root) { if (root == NULL) return 0; return max(depth(root->left), depth(root->right)) + 1; } bool isBalanced(TreeNode *root) { if (root == NULL) return true; int left = depth(root->left); int right = depth(root->right); return abs(left - right) <= 1 && isBalanced(root->left) && isBalanced(root->right); } };
本文探讨了如何确定一个二叉树是否为高度平衡。高度平衡的二叉树定义为:对于每一个节点,其两个子树的深度相差不超过1。通过示例详细解释了判断逻辑,并提供了C++实现代码。
247

被折叠的 条评论
为什么被折叠?



