Least Common Multiple
Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
Sample Input
2
3 5 7 15
6 4 10296 936 1287 792 1
Sample Output
105
10296
Source
Recommend
JGShining
AC code:
#include
"
stdio.h
"
__int64 s[ 1000 ];
__int64 hcf(__int64 a,__int64 b)
{
__int64 r = 0 ;
while (b != 0 )
{
r = a % b;
a = b;
b = r;
}
return (a);
}
__int64 lcd(__int64 u,__int64 v,__int64 h)
{
return (u * v / h);
}
int main( int argc, char * argv[])
{
int n,m,i;
while (scanf( " %d " , & n) == 1 )
{
while (n -- )
{
scanf( " %d " , & m);
for (i = 0 ;i <= m - 1 ;i ++ )
scanf( " %I64d " , & s[i]);
for (i = 0 ;i <= m - 2 ;i ++ )
{
s[i + 1 ] = lcd(s[i],s[i + 1 ],hcf(s[i],s[i + 1 ]));
}
printf( " %I64d\n " ,s[m - 1 ]);
}
}
return 0 ;
__int64 s[ 1000 ];
__int64 hcf(__int64 a,__int64 b)
{
__int64 r = 0 ;
while (b != 0 )
{
r = a % b;
a = b;
b = r;
}
return (a);
}
__int64 lcd(__int64 u,__int64 v,__int64 h)
{
return (u * v / h);
}
int main( int argc, char * argv[])
{
int n,m,i;
while (scanf( " %d " , & n) == 1 )
{
while (n -- )
{
scanf( " %d " , & m);
for (i = 0 ;i <= m - 1 ;i ++ )
scanf( " %I64d " , & s[i]);
for (i = 0 ;i <= m - 2 ;i ++ )
{
s[i + 1 ] = lcd(s[i],s[i + 1 ],hcf(s[i],s[i + 1 ]));
}
printf( " %I64d\n " ,s[m - 1 ]);
}
}
return 0 ;
}