题目描述
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
(一组正整数的最小公倍数(LCM)是最小正整数,其可被集合中的所有数字整除。例如,5,7和15的LCM是105。)
输入
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 … nm where m is the number of integers in the set and n1 … nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
(输入将包含多个问题实例。输入的第一行将包含一个整数,表示问题实例的数量。每个实例将由m n1 n2 n3 … nm形式的单个行组成,其中m是集合中的整数数,n1 … nm是整数。所有整数都是正数,并且位于32位整数的范围内。)
输出
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
(对于每个问题实例,输出包含相应LCM的单行。所有结果都将位于32位整数的范围内。)
样例输入
2
2 3 5
3 4 6 12
样例输出
15
12
代码
#include <stdio.h>

该博客介绍如何求解一组正整数的最小公倍数(LCM),并给出了输入输出的具体描述和样例。内容涉及处理多个问题实例,每个实例包含若干个正整数,要求在32位整数范围内计算LCM。
最低0.47元/天 解锁文章
392

被折叠的 条评论
为什么被折叠?



