QM5_Didstribution

本文介绍了概率论中的基本概念,包括离散分布与连续分布的区别,概率函数与概率密度函数的概念,以及累积概率函数的含义。重点讲解了离散均匀分布、二项式分布和连续均匀分布、正态分布等典型分布的特点,并探讨了标准化、置信区间等统计学知识点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Basic Concepts

Probability distribution

Discrete distribution (离散分布)
  • The distribution of the discrete random variable.
  • Discrete random variable
    • takes on a finite and countable number of possible values.
Continuous distribution (连续分布)
  • The distribution of the continuous random variable.
  • Continuous random variable:
    • takes on an infinite and uncountable number of possible values.

Probability function

Probability function (概率函数)
  • For discrete random variable taking on a specific value
  • p(x) = P(X=x)
    • X: 随机变量; x: a specific value
Probability density function (概率密度函数)
  • For continuous random variables within a range
  • P(x1<X<x2)
  • The probability of taking on an specific value is always zero, P(X=x)=0
  • 因为连续随机变量有无数个数, 即分母为无穷大, 所以取到一个具体的值的概率是0. 这并不代表不可能取到个这值,只是相对于取值范围, 取到该值的可能性太小. 所以对连续随机变量, 研究具体的值没有什么价值, 研究的是range.
Cumulative probability function (累积概率函数)
  • F(x) = P(X<=x)

插入图片, 用面积代表概率.

Dsicrete uniform distribution (离散均匀分布)

  • Definition
    • has a finite number of possible outcomes, all of which are equally likely.
  • Example: X = {1,2,3,4,5}
    • P(1) = P(2) = P(3) = P(4) = P(5) = 20%
    • P(3) = P(1) + P(2) + P(3) = 60%
    • P(2<=X<=4) = P(2) + P(3) + P(4) = 60%

Discrete Distribution

Binomial distribution ** (二项式分布)

Bernoulli random variable (trial,伯努利实验)
  • Random variables with only two outcomes, one represents success(denoted as 1); the other represents failure(denoted as 0). P(X=1) = p, P(X=0) = 1-P.
  • Binomial random variable
    • The number of successes in a Bernoulli trials. (做n次Bernoulli trials就得到二项式分布)
    • The probability of x successes in n trails.

插入老师板书.插入公式.

  • Expected value and variance

插入图片

  • 均值 => 期望值 => 算加权平均
  • 计算器算排列组合: 10个中挑出6个, 10 => 2nd => + ->6 -> =.

Continuous Distribution

Continuous uniform distribution (连续均匀分布)

  • Definition
    • probability of continuous uniform random variable which distribute evenly over an interval.
  • Properties
    • P(X=x)=0
    • P(x1<=X<=x2) = (x2-x1)/(b-a)

Normal distribution *** (正态分布)

  • Properties

    • completely described by mean and variable.
      • 只由两个参数决定 , 均值和方差.
    • 插入公式

    • skewness = 0, kurtosis = 3

    • Linear combination of normally distributed random variables is also normally distributed.
      • 比如x1~n是线性的, x2~n也是线性的, 则3x1+2x2~n也是线性的.
    • Probability descrase further from the mean, but the tails go on forever.
  • 考点

    • 性质
    • 置信区间
    • 标准化
  • Concepts

    • Confidence interval 置信区间
      • 落在区间内的概率, 就是切比雪夫.
    • Confidence level 置信水平
      • 置信水平 = 置信度
    • Confidence degree 置信度
  • Properties

插入图

  • k : 依赖因子(关键值), Reliability factor /Critical value.

  • Standard normal distribution 标准正态分布

    • also named z-distribution
    • X~N (0,1), 正态分布均值是0, 方差是1.
    • Standardization
    • >>>插入公式
    • z值含义
      • 正态分布与标准正态分布位置相对应.
      • 离标准正态分布均值的距离,即z个标准差.
      • 算出z值后,查表(z-table), 查出累计概率.
  • 例题

Shortfall risk **(缺口风险)

  • Definition
    • the risk that portfolio value or return will fall below the imnimum acceptable level(RL)
  • Properties
    • The lower, the better

Safety-first ratio **(第一安全比率)

  • Definition
    • the distance from the mean return to the shortfall elvel in units of standard deviation.
  • Calculation
  • >>>插入公式
  • Properties
  • The higher, the better
  • Minimizing shortfall risk - Maximizing safety-first ratio

Lognormal distribution **

  • Properties

插入图片

Student;s t-distribution ***

  • Properties
    • Defined by single parameter: degree of freedom(df), 由唯一一个参数决定.
      • df = n-1, where: n is the sample size.
    • Symmetrical, skewness = 0,
    • Fatter tails than a normal distribution (低峰肥尾)
    • As df increase t-distribution is approaching to standard normal distribution.
    • Given a degree of confidence, t-distribution has a wider confidence interval than z-distribution.
  • Shape

插图

Simulation (模拟)

插入图片

 

转载于:https://www.cnblogs.com/cheese320/p/9037868.html

内容概要:本文详细探讨了基于MATLAB/SIMULINK的多载波无线通信系统仿真及性能分析,重点研究了以OFDM为代表的多载波技术。文章首先介绍了OFDM的基本原理和系统组成,随后通过仿真平台分析了不同调制方式的抗干扰性能、信道估计算法对系统性能的影响以及同步技术的实现与分析。文中提供了详细的MATLAB代码实现,涵盖OFDM系统的基本仿真、信道估计算法比较、同步算法实现和不同调制方式的性能比较。此外,还讨论了信道特征、OFDM关键技术、信道估计、同步技术和系统级仿真架构,并提出了未来的改进方向,如深度学习增强、混合波形设计和硬件加速方案。; 适合人群:具备无线通信基础知识,尤其是对OFDM技术有一定了解的研究人员和技术人员;从事无线通信系统设计与开发的工程师;高校通信工程专业的高年级本科生和研究生。; 使用场景及目标:①理解OFDM系统的工作原理及其在多径信道环境下的性能表现;②掌握MATLAB/SIMULINK在无线通信系统仿真中的应用;③评估不同调制方式、信道估计算法和同步算法的优劣;④为实际OFDM系统的设计和优化提供理论依据和技术支持。; 其他说明:本文不仅提供了详细的理论分析,还附带了大量的MATLAB代码示例,便于读者动手实践。建议读者在学习过程中结合代码进行调试和实验,以加深对OFDM技术的理解。此外,文中还涉及了一些最新的研究方向和技术趋势,如AI增强和毫米波通信,为读者提供了更广阔的视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值