BZOJ5099 POI2018Pionek

本文介绍了一种基于向量极角区间的算法,用于解决特定几何问题。通过枚举所有极角差不超过π的极长区间,可以找到在某一方向上投影为正的所有向量。算法使用双指针技术,更新向量区间内的答案,实现高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  假设确定了最终所得向量的方向,则应该选择所有在该方向上投影为正的向量。按极角序排序后这显然是一段连续区间。最终向量方向很难枚举,但对于某个向量,在其上投影为正的向量与其夹角范围是(-π/2,π/2),所以只要枚举所有极角差不超过π的极长区间就可以了。这里的区间不是向量区间而是极角区间,相当于一条过原点的直线在旋转,所以双指针移动时每个向量区间都要更新答案。为了方便倍长向量数组,注意这样对于增加的那一半,极角需要加上2π。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
int n;
const double PI=3.14159266;
ll ans;
struct vector
{
    int x,y;double angle;
    bool operator <(const vector&a) const
    {
        return angle<a.angle;
    }
    vector operator +(const vector&a) const
    {
        return (vector){x+a.x,y+a.y};
    }
    vector operator -(const vector&a) const
    {
        return (vector){x-a.x,y-a.y};
    }
    ll len(){return 1ll*x*x+1ll*y*y;}
}a[N<<1];
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj5099.in","r",stdin);
    freopen("bzoj5099.out","w",stdout);
    const char LL[]="%I64d\n";
#else
    const char LL[]="%lld\n";
#endif
    n=read();
    for (int i=1;i<=n;i++) a[i].x=read(),a[i].y=read(),a[i].angle=atan2(a[i].x,a[i].y);
    sort(a+1,a+n+1);
    for (int i=n+1;i<=n*2;i++) a[i]=a[i-n],a[i].angle+=2*PI;
    vector cur=(vector){0,0};
    int x=0;
    for (int i=1;i<=n;i++)
    {
        while (x<n*2&&a[x+1].angle-a[i].angle<=PI) ans=max(ans,(cur=cur+a[++x]).len());
        ans=max(ans,(cur=cur-a[i]).len());
    }
    cout<<ans;
    return 0;
}

 

转载于:https://www.cnblogs.com/Gloid/p/10079761.html

内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值