最小(大)堆

#include <stdio.h>
#include <stdlib.h>
#include <limits.h> 

//if want to change MinHeap into MaxHeap,need to change four places

//MaxHeap       INT_MAX
#define MINDATA INT_MIN

typedef int ElementType;

struct MinHeap
{
    int TotalCapacity;
    int CurrentSize;
    ElementType *HeapData;
};

struct MinHeap *MinHeapInit(int TotalCapa)
{
    struct MinHeap *Heap;
    Heap = malloc(sizeof(struct MinHeap));
    
    Heap -> HeapData = malloc((TotalCapa+1)*sizeof(ElementType));
    Heap -> HeapData[0] = MINDATA;
    Heap -> TotalCapacity = TotalCapa;
    Heap -> CurrentSize = 0;
    
    return Heap;
}

int MinHeapIsEmpty(struct MinHeap *Heap)
{
    return (Heap -> CurrentSize == 0);
}

int MinHeapIsFull(struct MinHeap *Heap)
{
    return (Heap -> CurrentSize == Heap -> TotalCapacity);
}

int MakeMinHeapEmpty(struct MinHeap *Heap)
{
    Heap -> TotalCapacity = Heap -> CurrentSize = 0;
    free(Heap -> HeapData);
    Heap -> HeapData = NULL;
    
    return 0;
}

int MinHeapDestroy(struct MinHeap *Heap)
{
    MakeMinHeapEmpty(Heap);
    free(Heap);
    Heap = NULL;
    
    return 0;
}

//if Heap is full,return 1 
int MinHeapInsert(struct MinHeap *Heap,ElementType ToBeInsert)
{
    int i;
    
    if(MinHeapIsFull(Heap))
    {
        return 1;
    }
    
    //MaxHeap                                       < 
    for(i = ++Heap->CurrentSize;Heap->HeapData[i/2] > ToBeInsert;i /= 2)
    {
        Heap -> HeapData[i] = Heap -> HeapData[i/2];
    }
    Heap -> HeapData[i] = ToBeInsert;
    return 0;
}

//if Heap is Empty,return MINDATA 
ElementType MinHeapDeleteMin(struct MinHeap *Heap)
{
    int i;
    int Child;
    int MinimumElement,LastElement;
    
    if(MinHeapIsEmpty(Heap))
    {
        return Heap -> HeapData[0];
    }
    MinimumElement = Heap -> HeapData[1];
    LastElement = Heap -> HeapData[Heap -> CurrentSize --];
    
    for(i = 1;i*2 <= Heap->CurrentSize;i = Child)
    {
        //Find smaller child
        Child = i*2;
        //MaxHeap                                                > 
        if(Child != Heap->CurrentSize && Heap->HeapData[Child+1] < Heap->HeapData[Child])
        {
            Child ++;
        }
        
        //MaxHeap      < 
        if(LastElement > Heap -> HeapData[Child])
        {
            Heap -> HeapData[i] = Heap -> HeapData[Child];
        }
        else
        {
            break;
        }
    }
    Heap -> HeapData[i] = LastElement;
    return MinimumElement;
}

//if Heap is Empty,return MINDATA 
ElementType MinHeapFindMin(struct MinHeap *Heap)
{    
    if(MinHeapIsEmpty(Heap))
    {
        return Heap -> HeapData[0];
    }
    return Heap -> HeapData[1];
}

int main()
{
    int i;
    int TestArray[10] = {2,5,3,5,6,1,4,8,9,1};
    struct MinHeap *Heap = MinHeapInit(10);
    
    for(i = 0;i < 10;i ++)
    {
        MinHeapInsert(Heap,TestArray[i]);
    }
    
    MinHeapDeleteMin(Heap);
    MinHeapDeleteMin(Heap);
    
    for(i = 1;i < Heap->CurrentSize+1;i ++)
    {
        printf("%d ",Heap->HeapData[i]);
    }
    printf("\n");
    
    MinHeapDestroy(Heap);
    return 0;
}

 

转载于:https://www.cnblogs.com/Asurudo/p/9427302.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化并行计算等改进策略。; 适合人群:具备一定Python编程基础优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值