前面的文章中,我们已经讲述了PID控制器的实现,包括位置型PID控制器和增量型PID控制器。但这个实现只是最基本的实现,并没有考虑任何的干扰情况。在本节及后续的一些章节,我们就来讨论一下经典PID控制器的优化与改进。这一节我们首先来讨论针对积分项的积分分离优化算法。
1、基本思想
我们已经讲述了PID控制引入积分主要是为了消除静差,提高控制精度。但在过程的启动、结束或大幅度增减设定值时,短时间内系统输出有很大偏差,会造成PID运算的积分累积,引起超调或者振荡。为了解决这一干扰,人们引入了积分分离的思想。其思路是偏差值较大时,取消积分作用,以免于超调量增大;而偏差值较小时,引入积分作用,以便消除静差,提高控制精度。
具体的实现步骤是:根据实际情况,设定一个阈值;当偏差大于阈值时,消除积分仅用PD控制;当偏差小于等于阈值时,引入积分采用PID控制。则控制算法可表示为:
其中β称为积分开关系数,其取值范围为:
由上述表述及公式我们可以知道,积分分离算法的效果其实与ε值的选取有莫大关系,所以ε值的选取实际上是实现的难点,ε值过大则达不到积分分离的效果,而ε值过小则难以进入积分区,ε值的选取存在很大的主观因素。
对于经典的增量式PID算法,似乎没有办法由以上的公式推导而来,因为β随着err(k)的变化在不是修改着控制器的表达式。其实我们可以换一种角度考虑,每次系统调节未定后,偏差应该为零,然后只有当设定值改变时,系统才会响应而开始调节。设定值的改变实际上是一个阶跃变化,此时的控制输出记为U0,开始调节时,其调节增量其实与之前的一切没有关系。所以我们就可以以变化时刻开始为起点,而得到带积分分离的增量算法,以保证在启动、停止和快速变化时防止超调。公式如下:
其中β的取值与位置型PID算法一致。可能有人会担心偏差来回变化,造成积分作用的频繁分离和引入,进而使上述的增量表达式无法实现。其实我们分析一下就能发现,在开始时,由于设定值变化引起的偏差大而分离了积分作用,在接近设定值时,偏差变小就引入了积分,一边消除静差,而后处于稳态,直到下一次变化。
2、算法实现
这一部分,我们根据前面对其基本思想的描述,来实现基于积分分离的PID算法实现,同样是包括位置型和增量型两种实现方式。首先我们来看一下算法的实现过程,具体的流程图如下:
有上图我们知道,与普通的PID算法的区别,只是判断偏差的大小,偏差大时,为PD算法,偏差小时为PID算法。于是我们需要一个偏差检测与积分项分离系数β的函数。
1 static uint16_t BetaGeneration(float error,float epsilon) 2 3 { 4 5 uint16_t beta=0; 6 7 if(abs(error)<= epsilon) 8 9 { 10 11 beta=1; 12 13 } 14 15 return beta;