python fft库有哪些,改善Python中的FFT性能

本文探讨了 Python 中最快的快速傅立叶变换(FFT)实现方法。文章对比了 numpy.fft 和 scipy.fftpack,并提及它们并未使用 FFTW 库。此外,还讨论了 GPU 加速和 CPU 基础的 FFT 实现方案,如 reikna.fft、scikits.cuda 以及 pyFFTW 的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

What is the fastest FFT implementation in Python?

It seems numpy.fft and scipy.fftpack both are based on fftpack, and not FFTW. Is fftpack as fast as FFTW? What about using multithreaded FFT, or using distributed (MPI) FFT?

解决方案

You could certainly wrap whatever FFT implementation that you wanted to test using Cython or other like-minded tools that allow you to access external libraries.

GPU-based

If you're going to test FFT implementations, you might also take a look at GPU-based codes (if you have access to the proper hardware). There are several: reikna.fft, scikits.cuda.

CPU-based

There's also a CPU based python FFTW wrapper pyFFTW.

(There is pyFFTW3 as well, but it is not so actively maintained as pyFFTW, and it does not work with Python3. (source))

I don't have experience with any of these. It's probably going to fall to you to do some digging around and benchmark different codes for your particular application if speed is important to you.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值