svc预测概率_预测模型的概率校准

本文介绍了概率校准在预测模型中的重要性,特别是在监督学习的分类问题中。通过案例展示模型输出概率与真实概率之间的差距,并通过Brier分数评估校准效果。常见模型如Logistic回归、朴素贝叶斯、SVM和随机森林在校准前后的表现对比,强调了校准对提高预测准确性的关键作用。文章还提到了不同校准方法,如sigmoid校准和非参数的等渗校准,并通过实例解释了这两种方法的适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景

机器学习分为:监督学习,无监督学习,半监督学习(也可以用hinton所说的强化学习)等。在这里,先简要介绍一下监督学习从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求包括输入输出,也可以说是特征和目标。训练集中的目标是由人标注的。监督学习就是最常见的分类(注意和聚类区分)问题,通过已有的训练样本(即已知数据及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优表示某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的。也就具有了对未知数据分类的能力。监督学习的目标往往是让计算机去学习我们已经创建好的分类系统(模型)。常见的有监督学习算法:回归分析和统计分类。

      肿瘤预测模型是一个有监督学习模型,通过事先标注好的训练集,患者是否发生结局,患者信息等,训练一个COX模型,或者其他回归模型,在训练的模型基础上进行预测输出。在预测模型搭建过程中,由于抽样与正则化的原因,导致模型输出的概率值明显偏离真实的概率值。这时候我们称这些模型直接输出的概率值是定序值,而非定距数值,可比较大小,但其绝对值并无太多含义。那么如何将模型输出的prob校准到真实的逾期概率呢。使得经过校准后的概率变成逾期概率的意义。比如预测模型预测某个样本属于正类的概率是0.8,那么就应当说明有80%的把握认为该样本属于正类,或者100个概率为0.8的里面有80个确实属于正类。根据这个关系,可以用测试数据得到Probability Calibration curves。

假设我们考虑这样的一种情况:在二分类中,属于类别0的概率为0.500001,属于类别1的概率为0.499999。假若按照0.5作为判别标准,那么毋庸置疑应该划分到类别0里面,但是这个真正的分类却应该是1。如果我们不再做其他处理,那么这个就属于错误分类,降低了算法的准确性。如果在不改变整体算法的情况下,我们是否能够做一些补救呢?或者说验证下当前算法已经是最优的了呢?这个时候就用到了概率校准。

2.案例

如下表所示,

512769381d08bef448ef494278118b8f.png

pred_prob为预测模型输出的预测概率predict probability

在数据集中预测概率为pred_prob的总数为ttl,例如第一行ttl的550意思预测概率为0.1的总例数为550条观测,其中有positive_n阳性例数,正例占比positive_ratio =positive_n/ttl

如上表,模型输出的pred_prob = 0.1 对应真实结局发生率 0.0255

模型解决了数据的排序问题【随着预测概率的增加,真实概率也在增加】,但从这个例子我们可以看出,模型预测与真实值之间出现了很大的差异。

那么我们如何将模型预测的概率f(x) 校准到 Real_Proba,数学上我们只需要找到一个f(x) ~ Real_Proba的映射关系,也就是说找到一个g(x),其中g(x)中的x为f(x),也就是说利用f(x) ~ Real_Proba的对应关系,拟合一个函数g(x),将f(x)校准到Real_Proba。

实案例中,我们并不知道观测结局的真实发生率,但是我们有患者发生结局事件标签label,通常我们的数据组织形式如下:

<
from qiskit import QuantumCircuit, execute, Aer, transpile from qiskit.circuit.library import ZZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel from qiskit.aqua.components.optimizers import COBYLA from dwave.system import EmbeddingComposite, DWaveSampler import numpy as np import pandas as pd import tensorflow as tf from sklearn.svm import SVC from scipy.stats import poisson import nltk from nltk.sentiment import SentimentIntensityAnalyzer from sklearn.preprocessing import MinMaxScaler from functools import lru_cache, wraps import logging from concurrent.futures import ThreadPoolExecutor import time import warnings import psutil import pickle import sys import math # 配置日志 logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger('QuantumFootballPrediction') warnings.filterwarnings('ignore', category=UserWarning) # 初始化NLP工具 try: nltk.data.find('sentiment/vader_lexicon.zip') except LookupError: nltk.download('vader_lexicon', quiet=True) sia = SentimentIntensityAnalyzer() # 添加性能监控 def performance_monitor(func): call_counts = {} @wraps(func) def wrapper(*args, **kwargs): start_time = time.perf_counter() start_mem = psutil.Process().memory_info().rss / 1024 / 1024 # MB result = func(*args, **kwargs) elapsed = time.perf_counter() - start_time end_mem = psutil.Process().memory_info().rss / 1024 / 1024 # 获取类实例 instance = args[0] if args else None logger_name = getattr(instance, 'logger', logger).name if instance else logger.name # 记录执行时间与内存 logging.getLogger(logger_name).info( f"{func.__name__}: " f"Time={elapsed:.4f}s, " f"Mem={end_mem - start_mem:.2f}MB, " f"Called={call_counts.get(func.__name__, 0) + 1} times" ) # 更新调用计数 call_counts[func.__name__] = call_counts.get(func.__name__, 0) + 1 # 量子电路特定指标 if 'quantum' in func.__name__ and isinstance(result, dict) and 'circuit' in result: circuit = result['circuit'] logging.getLogger(logger_name).debug( f"Quantum circuit depth: {circuit.depth()}, gates: {len(circuit)}" ) return result return wrapper class QuantumMatchPredictor: """量子比赛预测器 - 核心量子预测组件""" def __init__(self, n_qubits=4): self.n_qubits = n_qubits self.optimizer = COBYLA(maxiter=100) self.backend = Aer.get_backend('qasm_simulator') self.feature_map = ZZFeatureMap(n_qubits, reps=2) def build_circuit(self, features: np.ndarray) -> QuantumCircuit: """构建参数化预测线路 - 优化为O(n)复杂度""" qc = QuantumCircuit(self.n_qubits) # 特征编码层 - 使用特征值直接映射到旋转门 for i, val in enumerate(features[:self.n_qubits]): qc.ry(val * np.pi, i) # 特征值映射到[0, π]范围 # 添加特征映射层 qc.compose(self.feature_map, inplace=True) return qc @performance_monitor def predict(self, features: np.ndarray, shots=1024) -> float: """量子预测核心 - 返回主胜概率""" qc = self.build_circuit(features) # 添加测量 qc.measure_all() # 执行并返回概率 try: tqc = transpile(qc, self.backend, optimization_level=1) result = execute(tqc, self.backend, shots=shots).result() counts = result.get_counts(tqc) # 返回全1状态的概率作为主胜概率 return counts.get('1'*self.n_qubits, 0) / shots except Exception as e: logger.error(f"量子预测执行失败: {e}") # 返回随机值作为后备 return np.random.uniform(0.4, 0.6) class QuantumFootballPredictionModel: # 资源管理常量 MAX_QUBITS = 8 MAX_BATCH_SIZE = 8 _quantum_shots = 5000 def __init__(self, biomechanics_model_path=None): # 联赛特异性权重模板 self.league_templates = { '英超': {'体能系数': 1.3, '顺力度': 0.9, '特殊规则': '补时>5分钟时大球概率+15%'}, '意甲': {'防守强度': 1.5, '往绩克制': 1.2, '特殊规则': '平局概率基准值+8%'}, '德甲': {'主场优势': 1.4, '前锋缺阵影响': 2, '特殊规则': '半场领先最终胜率92%'}, '西甲': {'技术流修正': 1.2, '裁判影响': 0.7, '特殊规则': '强队让1.25盘口下盘率61%'} } # 量子计算资源 self.quantum_resources = self.detect_quantum_resources() logger.info(f"检测到量子资源: {self.quantum_resources}") # 量子计算后端 self.quantum_simulator = Aer.get_backend('qasm_simulator') self.dwave_sampler = None if self.quantum_resources.get('dwave', False): try: self.dwave_sampler = EmbeddingComposite(DWaveSampler()) logger.info("成功连接D-Wave量子处理器") except Exception as e: logger.warning(f"无法连接D-Wave量子处理器: {e}") # 预加载模型 self.biomechanics_model = None if biomechanics_model_path: try: self.biomechanics_model = tf.keras.models.load_model(biomechanics_model_path) logger.info("成功加载生物力学模型") except Exception as e: logger.error(f"加载生物力学模型失败: {e}") # 初始化量子匹配预测器 self.quantum_predictor = QuantumMatchPredictor(n_qubits=4) self.lstm_model = self.build_lstm_model() self._energy_cache = {} self.energy_matrix = np.array([[0.5, -0.3], [-0.3, 0.5]]) # 预计算矩阵 @property def quantum_shots(self): if self.quantum_resources.get('dwave', False): return 2000 # D-Wave系统采样更可靠,可减少次数 elif self.quantum_resources.get('ibmq', False): return 8192 # IBMQ硬件需要更多采样 else: return self._quantum_shots # 默认模拟器采样次数 def detect_quantum_resources(self): """检测可用量子计算资源""" resources = { "local_simulator": True, "ibmq": False, "dwave": False } try: from qiskit import IBMQ IBMQ.load_account() providers = IBMQ.providers() resources["ibmq"] = len(providers) > 0 except Exception as e: logger.info(f"IBM Quantum访问失败: {e}") try: from dwave.cloud import Client client = Client.from_config() if client.get_solvers(): resources["dwave"] = True client.close() except Exception as e: logger.info(f"D-Wave访问失败: {e}") return resources def build_lstm_model(self): """优化后的LSTM变盘预测模型""" model = tf.keras.Sequential([ tf.keras.layers.LSTM(128, return_sequences=True, input_shape=(60, 3)), tf.keras.layers.Dropout(0.2), tf.keras.layers.LSTM(64), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(3, activation='softmax') ]) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy']) return model # ======================== # 输入层:数据标准化 # ======================== @performance_monitor def standardize_input(self, raw_data): """数据标准化处理""" standardized = {} # 基础信息 league_weights = {'英超': 1.2, '西甲': 1.15, '意甲': 1.1, '德甲': 1.15, '法甲': 1.05} weather_weights = {'晴天': 0, '多云': -0.1, '小雨': -0.2, '大雨': -0.3, '雪': -0.4} standardized['league'] = league_weights.get(raw_data.get('league', '其他'), 1.0) standardized['weather'] = weather_weights.get(raw_data.get('weather', '晴天'), 0) standardized['pitch'] = raw_data.get('pitch_condition', 0.85) # 赛季周数(用于动态权重计算) match_week = raw_data.get('match_week', 1) standardized['match_week'] = min(max(match_week, 1), 38) # 限制在1-38周范围内 # 球队实力 home_rank = raw_data.get('home_rank', 10) away_rank = raw_data.get('away_rank', 10) home_win_rate = raw_data.get('home_win_rate', 0.5) away_win_rate = raw_data.get('away_win_rate', 0.5) home_rank_weight = 1 / max(home_rank, 1) # 防止除零 away_rank_weight = 1 / max(away_rank, 1) # 向量化计算 home_factors = np.array([home_win_rate, home_rank_weight]) away_factors = np.array([away_win_rate, away_rank_weight]) weights = np.array([0.3, 0.7]) standardized['home_strength'] = np.dot(home_factors, weights) standardized['away_strength'] = np.dot(away_factors, weights) # 保存原始胜率用于量子预测 standardized['home_win_rate'] = home_win_rate standardized['away_win_rate'] = away_win_rate # 交锋历史 historical_win_rate = raw_data.get('historical_win_rate', 0.5) historical_win_odds_rate = raw_data.get('historical_win_odds_rate', 0.5) standardized['history_advantage'] = ( 0.6 * historical_win_rate + 0.4 * historical_win_odds_rate ) # 伤停影响 injury_impact = 0 injuries = raw_data.get('injuries', {}) for position, count in injuries.items(): if position == 'forward': injury_impact -= 0.2 * count elif position == 'goalkeeper': injury_impact -= 0.3 * count elif position == 'defender': injury_impact -= 0.15 * count elif position == 'midfielder': injury_impact -= 0.1 * count standardized['injury_impact'] = min(max(injury_impact, -1.0), 0) # 限制范围 # 赛程疲劳 matches_last_7_days = raw_data.get('matches_last_7_days', 0) travel_distance = raw_data.get('travel_distance', 0) standardized['fatigue'] = min( 0.3 * min(matches_last_7_days, 4) + # 限制最多4场 0.7 * min(travel_distance / 1000, 5.0), # 限制最多5000公里 10.0 # 最大值限制 ) # 赔率数据 standardized['william_odds'] = raw_data.get('william_odds', [2.0, 3.0, 3.5]) standardized['asian_odds'] = raw_data.get('asian_odds', [0.85, 0.95, 1.0, 0.92]) # 市场热度 betfair_volume_percent = raw_data.get('betfair_volume_percent', 0.5) theoretical_probability = raw_data.get('theoretical_probability', 0.5) if theoretical_probability > 0: standardized['market_heat'] = min(max( (betfair_volume_percent - theoretical_probability) / theoretical_probability, -1.0), 1.0) # 限制在[-1,1]范围 else: standardized['market_heat'] = 0.0 # 3D姿态数据 if 'player_movement' in raw_data and self.biomechanics_model is not None: try: standardized['injury_risk'] = self.injury_risk_prediction(raw_data['player_movement']) except Exception as e: logger.error(f"伤病风险预测失败: {e}") standardized['injury_risk'] = 0.0 else: standardized['injury_risk'] = 0.0 return standardized # ======================== # 特征引擎层 # ======================== def injury_risk_prediction(self, player_movement): """3D姿态伤病预测""" asymmetry = self.calc_joint_asymmetry(player_movement) load_dist = self.weight_distribution_imbalance(player_movement) # 确保输入为二维数组 input_data = np.array([[asymmetry, load_dist]]) return self.biomechanics_model.predict(input_data, verbose=0)[0][0] def calc_joint_asymmetry(self, movement_data): """计算关节不对称性""" # 假设movement_data包含左右数据 left_side = movement_data.get('left_side', np.zeros(10)) right_side = movement_data.get('right_side', np.zeros(10)) return np.mean(np.abs(left_side - right_side)) def weight_distribution_imbalance(self, movement_data): """计算重量分布不平衡""" front_load = movement_data.get('front_load', np.zeros(10)) back_load = movement_data.get('back_load', np.zeros(10)) return np.abs(np.mean(front_load - back_load)) @performance_monitor def quantum_clustering(self, odds_matrix): """量子聚类广实区间判定""" try: # 限制特征维度 feature_dimension = min(odds_matrix.shape[1], 4) feature_map = ZZFeatureMap(feature_dimension=feature_dimension, reps=2) q_kernel = QuantumKernel(feature_map=feature_map, quantum_instance=self.quantum_simulator) return SVC(kernel=q_kernel.evaluate).fit_predict(odds_matrix) except Exception as e: logger.error(f"量子聚类失败: {e}") # 返回随机结果作为后备 return np.random.randint(0, 2, size=odds_matrix.shape[0]) def momentum_calculation(self, recent_form, history_advantage, form_continuity, odds_match, market_sentiment): """顺力度量化计算""" return min(max( 0.4 * recent_form + 0.3 * history_advantage + 0.15 * form_continuity + 0.1 * odds_match + 0.05 * market_sentiment, 0.0), 10.0) # 限制在[0,10]范围 @lru_cache(maxsize=100) def energy_balance_model(self, home_energy, away_energy, match_type): """优化后的动态能量守恒模型""" # 添加对match_type的处理 if match_type not in ['regular', 'derby', 'cup']: match_type = 'regular' # 根据比赛类型设置参数 gamma = 0.8 if match_type == 'derby' else 0.5 if match_type == 'cup' else 0.3 t = self.standardized_data.get('fatigue', 0) team_energy = np.array([home_energy, away_energy]) fatigue_vector = np.array([-gamma * t, gamma * t]) dE = np.dot(self.energy_matrix, team_energy) + fatigue_vector # 限制能量变化范围 dE[0] = min(max(dE[0], -1.0), 1.0) dE[1] = min(max(dE[1], -1.0), 1.0) return dE[0], dE[1] # ======================== # 量子优化层 # ======================== @performance_monitor def quantum_annealing_optimizer(self, prob_dist, market_data): """量子退火赔率平衡器""" # 参数校验 if not all(0 <= p <= 1 for p in prob_dist): logger.warning("概率分布值超出范围,进行归一化") total = sum(prob_dist) if total > 0: prob_dist = [p/total for p in prob_dist] else: prob_dist = [1/3, 1/3, 1/3] if self.dwave_sampler is None: logger.warning("D-Wave采样器不可用,使用经典优化") # 经典模拟退火作为后备 from scipy.optimize import minimize def objective(x): return -np.dot(prob_dist, x) # 约束条件:概率和为1 constraints = ({'type': 'eq', 'fun': lambda x: sum(x) - 1}) bounds = [(0, 1) for _ in range(3)] initial_guess = prob_dist result = minimize(objective, initial_guess, method='SLSQP', bounds=bounds, constraints=constraints) return result.x if result.success else [1/3, 1/3, 1/3] h = {0: -prob_dist[0], 1: -prob_dist[1], 2: -prob_dist[2]} J = {(0,1): market_data.get('arbitrage', 0), (0,2): -market_data.get('deviation', 0), (1,2): market_data.get('trend', 0)} try: response = self.dwave_sampler.sample_ising(h, J, num_reads=1000) sample = response.first.sample # 将样本转换为概率调整 adjusted_probs = [prob_dist[i] * (1 + 0.1 * sample[i]) for i in range(3)] # 归一化 total = sum(adjusted_probs) return [p/total for p in adjusted_probs] if total > 0 else [1/3, 1/3, 1/3] except Exception as e: logger.error(f"量子退火优化失败: {e}") return prob_dist def lstm_odds_change(self, historical_odds): """LSTM赔率变盘预测""" if historical_odds is None or len(historical_odds) < 60: logger.warning("历史赔率数据不足,使用简单平均") return np.argmax(np.mean(historical_odds, axis=0)) if historical_odds else 0 # 数据预处理 scaler = MinMaxScaler() scaled_odds = scaler.fit_transform(historical_odds) X = scaled_odds.reshape(1, scaled_odds.shape[0], scaled_odds.shape[1]) # 预测变盘方向 prediction = self.lstm_model.predict(X, verbose=0) return np.argmax(prediction) @performance_monitor def quantum_score_simulation(self, home_energy, away_energy, hist_avg): """优化后的量子蒙特卡洛比分预测""" # 使用更高效的量子比特分配方案 qc = QuantumCircuit(4) # 减少到4个量子比特以提高效率 # 主客队能量编码 theta_home = home_energy * np.pi theta_away = away_energy * np.pi # 应用旋转门 qc.ry(theta_home, 0) qc.ry(theta_away, 1) # 历史交锋影响 hist_factor = min(1.0, abs(hist_avg[0] - hist_avg[1]) * 0.5) if hist_avg[0] > hist_avg[1]: qc.crx(hist_factor * np.pi, 0, 2) else: qc.crx(hist_factor * np.pi, 1, 3) # 纠缠量子比特以增加相关性 - O(n)复杂度 for i in range(self.n_qubits - 1): qc.cx(i, i+1) # 测量 qc.measure_all() # 量子采样 backend = self.quantum_simulator try: tqc = transpile(qc, backend, optimization_level=3) job = execute(tqc, backend, shots=self.quantum_shots) result = job.result() counts = result.get_counts(tqc) except Exception as e: logger.error(f"量子比分模拟失败: {e}") return f"{round(hist_avg[0])}-{round(hist_avg[1])}" # 改进的比分解码逻辑 goal_counts = {} for state, count in counts.items(): # 前2位表示主队进球数,后2位表示客队进球数 home_goals = int(state[:2], 2) % 5 # 限制最大进球数为4 away_goals = int(state[2:], 2) % 5 # 应用泊松分布修正 home_goals = min(home_goals, 4) away_goals = min(away_goals, 4) score = f"{home_goals}-{away_goals}" goal_counts[score] = goal_counts.get(score, 0) + count # 返回出现频率最高的比分 return max(goal_counts, key=goal_counts.get) # ======================== # 动态修正层 # ======================== def apply_league_template(self, league_type, features): """应用联赛特异性模板""" template = self.league_templates.get(league_type, {}) for feature, factor in template.items(): if feature in features and isinstance(features[feature], (int, float)): features[feature] *= factor return features def enhanced_cold_warning(self, team_energy, market_data): """增强型冷门预警""" risk_score = 0 # 能量赔率偏离 fair_odds = market_data.get('fair_odds', 0.5) if abs(team_energy - fair_odds) > 0.25: risk_score += 35 # 社交媒体情绪 if market_data.get('social_sentiment', 0) > 0.65: risk_score += 20 # 主力轮换检测 training_intensity = market_data.get('training_intensity', 50) coach_tone = market_data.get('coach_tone', 'normal') if training_intensity < 45 and coach_tone == 'conservative': risk_score += 25 return min(risk_score, 100) # 上限100 def inplay_calibration(self, pre_match_pred, match_status): """修复后的滚球实时校准""" win_prob = pre_match_pred['home_win_prob'] # 领先方被压制 if 'xG_diff' in match_status and 'possession' in match_status: if match_status['xG_diff'] < -0.8 and match_status.get('score_lead', 0) == 1: win_prob -= 0.15 * (1 - match_status['possession']/100) # 红牌影响 if match_status.get('red_card', False): card_team = match_status.get('card_team', 0) # 0=主队, 1=客队 minute = match_status.get('minute', 0) time_factor = max(0, (90 - minute) / 90) if card_team == 0: # 主队红牌 win_prob -= 0.4 * time_factor else: # 客队红牌 win_prob += 0.25 * time_factor # 确保概率在[0,1]范围内 win_prob = max(0.0, min(1.0, win_prob)) # 更新预测结果 updated_pred = pre_match_pred.copy() updated_pred['home_win_prob'] = win_prob return updated_pred # ======================== # 决策输出层 # ======================== def win_probability(self, home_rating, away_rating, william_odds, return_rate=0.95, fatigue_factor=0): """修复后的胜平负概率计算""" rating_diff = (home_rating - away_rating) / 5 base_prob = 1 / (1 + np.exp(-rating_diff)) european_prob = return_rate / william_odds[0] if william_odds[0] > 0 else base_prob p_home_win = base_prob * 0.7 + european_prob * 0.3 if fatigue_factor > 2.0: away_rating_adj = away_rating * (1 - min(fatigue_factor/10, 0.3)) rating_diff_adj = (home_rating - away_rating_adj) / 5 base_prob_adj = 1 / (1 + np.exp(-rating_diff_adj)) p_home_win = base_prob_adj * 0.6 + european_prob * 0.4 # 改进的平局概率计算 draw_prob = (1 - abs(home_rating - away_rating)/10) * 0.3 # 考虑赔率中的平局概率 if len(william_odds) > 1 and william_odds[1] > 0: draw_prob = (draw_prob + return_rate/william_odds[1]) / 2 # 确保概率在合理范围内 p_home_win = min(max(p_home_win, 0.1), 0.8) draw_prob = min(max(draw_prob, 0.1), 0.5) p_away_win = 1 - p_home_win - draw_prob # 归一化处理 total = p_home_win + draw_prob + p_away_win p_home_win /= total draw_prob /= total p_away_win /= total return p_home_win, draw_prob, p_away_win # ======================== # 动态权重计算 # ======================== def calculate_dynamic_weights(self, match_week): """ 计算量子模型和传统模型的动态权重 使用公式: α(t) = 1 / (1 + exp(-k(t - t0))) 其中 t0 = 20 (赛季中段), k = 0.1 量子权重: w_q = α(t) × 0.7 + 0.3 传统权重: w_c = 1 - w_q """ t = match_week t0 = 20 # 赛季中段 k = 0.1 # 调整参数 # 计算α(t) alpha = 1 / (1 + math.exp(-k * (t - t0))) # 量子权重在0.3-1.0之间变化 w_quantum = alpha * 0.7 + 0.3 w_classic = 1 - w_quantum logger.info(f"动态权重计算: 赛季周数={t}, α={alpha:.3f}, 量子权重={w_quantum:.3f}, 传统权重={w_classic:.3f}") return w_quantum, w_classic # ======================== # 量子特征预测 # ======================== def quantum_feature_prediction(self, features: dict) -> float: """ 使用量子模型预测比赛特征 特征顺序: home_strength, away_strength, history_advantage, fatigue """ try: # 准备量子预测的特征数组 quantum_features = np.array([ features['home_strength'], features['away_strength'], features['history_advantage'], features['fatigue'] ]) # 进行量子预测 return self.quantum_predictor.predict(quantum_features) except Exception as e: logger.error(f"量子特征预测失败: {e}") # 返回随机值作为后备 return np.random.uniform(0.4, 0.6) # ======================== # 整合预测流程 # ======================== @performance_monitor def predict(self, raw_data): """整合预测流程 - 包含量子与传统模型动态融合""" try: # 1. 数据标准化 self.standardized_data = self.standardize_input(raw_data) league = raw_data.get('league', '英超') # 2. 应用联赛模板 self.apply_league_template(league, self.standardized_data) # 3. 计算球队能量 home_energy = self.standardized_data['home_strength'] * (1 + self.standardized_data['history_advantage']) away_energy = self.standardized_data['away_strength'] * (1 - self.standardized_data['injury_impact']) # 4. 量子比分模拟 hist_avg = raw_data.get('historical_avg_score', [1.5, 1.2]) predicted_score = self.quantum_score_simulation(home_energy, away_energy, hist_avg) # 5. 传统胜平负概率计算 william_odds = self.standardized_data['william_odds'] home_win, draw, away_win = self.win_probability( home_energy, away_energy, william_odds, fatigue_factor=self.standardized_data['fatigue'] ) # 6. 量子特征预测 quantum_prediction = self.quantum_feature_prediction({ 'home_strength': self.standardized_data['home_strength'], 'away_strength': self.standardized_data['away_strength'], 'history_advantage': self.standardized_data['history_advantage'], 'fatigue': self.standardized_data['fatigue'] }) # 7. 动态融合量子与传统预测 match_week = self.standardized_data.get('match_week', 1) w_quantum, w_classic = self.calculate_dynamic_weights(match_week) # 融合主胜概率 fused_home_win = w_quantum * quantum_prediction + w_classic * home_win # 保持相对比例不变 scale = (1 - fused_home_win) / (1 - home_win) if home_win < 1.0 else 1.0 fused_draw = draw * scale fused_away_win = away_win * scale # 归一化处理 total = fused_home_win + fused_draw + fused_away_win fused_home_win /= total fused_draw /= total fused_away_win /= total fused_probs = [fused_home_win, fused_draw, fused_away_win] # 8. 量子退火优化赔率 market_data = { 'arbitrage': raw_data.get('arbitrage_opportunity', 0.05), 'deviation': raw_data.get('odds_deviation', 0.1), 'trend': raw_data.get('market_trend', 0.0) } optimized_probs = self.quantum_annealing_optimizer(fused_probs, market_data) # 9. 冷门预警 cold_risk = self.enhanced_cold_warning(home_energy, { 'fair_odds': 1/(william_odds[0] * 1.05), 'social_sentiment': raw_data.get('social_sentiment', 0.5), 'training_intensity': raw_data.get('training_intensity', 60), 'coach_tone': raw_data.get('coach_tone', 'normal') }) # 10. 构建最终结果 result = { 'predicted_score': predicted_score, 'home_win_prob': optimized_probs[0], 'draw_prob': optimized_probs[1], 'away_win_prob': optimized_probs[2], 'cold_risk': f"{cold_risk}%", 'key_factors': { 'home_energy': home_energy, 'away_energy': away_energy, 'injury_impact': self.standardized_data['injury_impact'], 'fatigue_factor': self.standardized_data['fatigue'], 'weather_impact': self.standardized_data['weather'], 'quantum_prediction': quantum_prediction, 'w_quantum': w_quantum, 'w_classic': w_classic }, 'quantum_optimized': True if self.dwave_sampler else False } # 11. 如果有滚球数据,进行实时校准 if 'inplay_data' in raw_data: result = self.inplay_calibration(result, raw_data['inplay_data']) return result except Exception as e: logger.exception("预测过程中发生错误") return { 'error': str(e), 'fallback_prediction': self.fallback_prediction(raw_data) } def fallback_prediction(self, raw_data): """经典方法作为后备预测""" # 简单基于排名和赔率的预测 home_rank = raw_data.get('home_rank', 10) away_rank = raw_data.get('away_rank', 10) home_adv = (away_rank - home_rank) * 0.05 # 基本胜率计算 home_win = 0.4 + home_adv away_win = 0.3 - home_adv draw = 0.3 # 考虑赔率影响 if 'william_odds' in raw_data: odds = raw_data['william_odds'] implied_home = 1/odds[0] home_win = (home_win + implied_home) / 2 return { 'home_win_prob': home_win, 'draw_prob': draw, 'away_win_prob': away_win, 'predicted_score': "1-1", 'cold_risk': "30%", 'note': "经典预测方法" } # 示例使用 if __name__ == "__main__": # 创建示例数据 sample_data = { 'league': '英超', 'weather': '小雨', 'pitch_condition': 0.8, 'home_rank': 3, 'away_rank': 8, 'home_win_rate': 0.7, 'away_win_rate': 0.4, 'historical_win_rate': 0.6, 'historical_win_odds_rate': 0.55, 'injuries': {'forward': 1, 'defender': 2}, 'matches_last_7_days': 2, 'travel_distance': 800, # 公里 'william_odds': [1.8, 3.4, 4.2], 'asian_odds': [0.85, 0.95, 1.0, 0.92], 'betfair_volume_percent': 0.65, 'theoretical_probability': 0.55, 'historical_avg_score': [1.8, 1.0], 'arbitrage_opportunity': 0.03, 'odds_deviation': 0.15, 'market_trend': -0.1, 'social_sentiment': 0.7, 'training_intensity': 40, 'coach_tone': 'conservative', 'match_type': 'derby', # 比赛类型 'match_week': 5 # 赛季第5周 } # 添加3D姿态数据(简化示例) sample_data['player_movement'] = { 'left_side': np.array([0.8, 0.7, 0.9, 0.85, 0.75]), 'right_side': np.array([0.6, 0.65, 0.7, 0.8, 0.75]), 'front_load': np.array([0.5, 0.55, 0.6]), 'back_load': np.array([0.4, 0.45, 0.5]) } # 创建模型实例并预测 model = QuantumFootballPredictionModel() prediction = model.predict(sample_data) print("\n足球比赛预测结果:") print(f"预测比分: {prediction.get('predicted_score', 'N/A')}") print(f"主胜概率: {prediction.get('home_win_prob', 0):.2%}") print(f"平局概率: {prediction.get('draw_prob', 0):.2%}") print(f"客胜概率: {prediction.get('away_win_prob', 0):.2%}") print(f"量子预测值: {prediction.get('key_factors', {}).get('quantum_prediction', 0):.2%}") print(f"量子权重: {prediction.get('key_factors', {}).get('w_quantum', 0):.2f}") print(f"传统权重: {prediction.get('key_factors', {}).get('w_classic', 0):.2f}") print(f"冷门风险: {prediction.get('cold_risk', 'N/A')}") print(f"是否量子优化: {prediction.get('quantum_optimized', False)}") # 添加滚球数据示例 sample_data['inplay_data'] = { 'minute': 60, 'score': '1-0', 'possession': 45, # 主队控球率% 'xG_diff': -0.7, # 主队预期进球差 'red_card': True, 'card_team': 0 # 0=主队 } # 滚球校准 inplay_prediction = model.predict(sample_data) print("\n滚球校准后主胜概率:", f"{inplay_prediction.get('home_win_prob', 0):.2%}")
最新发布
06-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值