概率密度求解定理_SLAM十四讲重要公式定理整理(中)

本文深入探讨了视觉SLAM后端优化的关键技术,包括Kalman滤波、扩展Kalman滤波(EKF)、Bundle Adjustment及Pose Graph优化等内容。通过详细解析相关数学原理及其在SLAM中的应用,为读者提供了全面的理解视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中篇的章节范围为十四讲中的第10和11讲,其中列出的概念,公式及定理证明可以用作备忘方便理解和查阅。

CH10 后端1

ch10-1状态估计概率解释建模

原运动和观测方程:

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+%5Cboldsymbol%7Bx%7D_%7Bk%7D%3Df%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk-1%7D%2C+%5Cboldsymbol%7Bu%7D_%7Bk%7D%5Cright%29%2B%5Cboldsymbol%7Bw%7D_%7Bk%7D+%5C%5C+%5Cboldsymbol%7Bz%7D_%7Bk%2C+j%7D%3Dh%5Cleft%28%5Cboldsymbol%7By%7D_%7Bj%7D%2C+%5Cboldsymbol%7Bx%7D_%7Bk%7D%5Cright%29%2B%5Cboldsymbol%7Bv%7D_%7Bk%2C+j%7D+%5Cend%7Barray%7D+%5Cquad+k%3D1%2C+%5Cldots%2C+N%2C+j%3D1%2C+%5Cldots%2C+M%5Cright.+%5C%5C

重新定义x为k时刻的所有未知量,包含原先的相机位姿x与m个路标点

equation?tex=%5Cboldsymbol%7Bx%7D_%7Bk%7D+%5Ctriangleq%5Cleft%5C%7B%5Cboldsymbol%7Bx%7D_%7Bk%7D%2C+%5Cboldsymbol%7By%7D_%7B1%7D%2C+%5Cldots%2C+%5Cboldsymbol%7By%7D_%7Bm%7D%5Cright%5C%7D+%5C%5C

用Bayes法则,改写0~k时刻的状态分布,其中右侧两项分别为似然和先验:

equation?tex=P%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7B0%7D%2C+%5Cboldsymbol%7Bu%7D_%7B1%3A+k%7D%2C+%5Cboldsymbol%7Bz%7D_%7B1%3A+k%7D%5Cright%29+%5Cpropto+P%5Cleft%28%5Cboldsymbol%7Bz%7D_%7Bk%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7Bk%7D%5Cright%29+P%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7B0%7D%2C+%5Cboldsymbol%7Bu%7D_%7B1%3A+k%7D%2C+%5Cboldsymbol%7Bz%7D_%7B1%3A+k-1%7D%5Cright%29+%5C%5C

将先验部分按照第k-1时刻为条件概率展开:

equation?tex=P%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7B0%7D%2C+%5Cboldsymbol%7Bu%7D_%7B1%3A+k%7D%2C+%5Cboldsymbol%7Bz%7D_%7B1%3A+k-1%7D%5Cright%29%3D%5Cint+P%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7Bk-1%7D%2C+%5Cboldsymbol%7Bx%7D_%7B0%7D%2C+%5Cboldsymbol%7Bu%7D_%7B1%3A+k%7D%2C+%5Cboldsymbol%7Bz%7D_%7B1%3A+k-1%7D%5Cright%29+P%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk-1%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7B0%7D%2C+%5Cboldsymbol%7Bu%7D_%7B1%3A+k%7D%2C+%5Cboldsymbol%7Bz%7D_%7B1%3A+k-1%7D%5Cright%29+%5Cmathrm%7Bd%7D+%5Cboldsymbol%7Bx%7D_%7Bk-1%7D+%5C%5C

ch10-2 线性系统和KF

预备知识(高斯分布)高维形式的高斯分布概率密度函数:

equation?tex=p%28x%29%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B%282+%5Cpi%29%5E%7BN%7D+%5Coperatorname%7Bdet%7D%28%5Cmathbf%7B%5CSigma%7D%29%7D%7D+%5Cexp+%5Cleft%28-%5Cfrac%7B1%7D%7B2%7D%28%5Cboldsymbol%7Bx%7D-%5Cboldsymbol%7B%5Cmu%7D%29%5E%7BT%7D+%5Cboldsymbol%7B%5CSigma%7D%5E%7B-1%7D%28%5Cboldsymbol%7Bx%7D-%5Cboldsymbol%7B%5Cmu%7D%29%5Cright%29+%5C%5C

对于两个独立的高斯分布

equation?tex=%5Cboldsymbol%7Bx%7D+%5Csim+N%5Cleft%28%5Cboldsymbol%7B%5Cmu%7D_%7Bx%7D%2C+%5Cmathbf%7B%5CSigma%7D_%7Bx+x%7D%5Cright%29%2C+%5Cquad+%5Cboldsymbol%7By%7D+%5Csim+N%5Cleft%28%5Cboldsymbol%7B%5Cmu%7D_%7By%7D%2C+%5Cboldsymbol%7B%5CSigma%7D_%7By+y%7D%5Cright%29+%5C%5C矩阵乘法后的高斯分布

equation?tex=%5Cboldsymbol%7By%7D%3D%5Cboldsymbol%7BA%7D+%5Cboldsymbol%7Bx%7D+%5C%5C

equation?tex=%5Cboldsymbol%7By%7D+%5Csim+N%5Cleft%28%5Cboldsymbol%7BA%7D+%5Cboldsymbol%7B%5Cmu%7D_%7Bx%7D%2C+%5Cboldsymbol%7BA%7D+%5Cboldsymbol%7B%5CSigma%7D_%7Bx+x%7D+%5Cboldsymbol%7BA%7D%5E%7BT%7D%5Cright%29+%5C%5C随机变量乘积的高斯分布

equation?tex=p%28%5Cboldsymbol%7Bx%7D+%5Cboldsymbol%7By%7D%29%3DN%28%5Cboldsymbol%7B%5Cmu%7D%2C+%5Cboldsymbol%7B%5CSigma%7D%29+%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+%5Cmathbf%7B%5CSigma%7D%5E%7B-1%7D+%26%3D%5Cboldsymbol%7B%5CSigma%7D_%7Bx+x%7D%5E%7B-1%7D%2B%5Cboldsymbol%7B%5CSigma%7D_%7By+y%7D%5E%7B-1%7D+%5C%5C+%5Cboldsymbol%7B%5CSigma%7D+%5Cboldsymbol%7B%5Cmu%7D+%26%3D%5Cboldsymbol%7B%5CSigma%7D_%7Bx+x%7D%5E%7B-1%7D+%5Cboldsymbol%7B%5Cmu%7D_%7Bx%7D%2B%5Cboldsymbol%7B%5CSigma%7D_%7By+y%7D%5E%7B-1%7D+%5Cboldsymbol%7B%5Cmu%7D_%7By%7D+%5Cend%7Baligned%7D+%5C%5C复合运算 x,y不独立时,复合分布为:

equation?tex=p%28%5Cboldsymbol%7Bx%7D%2C+%5Cboldsymbol%7By%7D%29%3DN%5Cleft%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D+%5Cboldsymbol%7B%5Cmu%7D_%7Bx%7D+%5C%5C+%5Cboldsymbol%7B%5Cmu%7D_%7By%7D+%5Cend%7Barray%7D%5Cright%5D%2C%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D+%5Cboldsymbol%7B%5CSigma%7D_%7Bx+x%7D+%26+%5Cboldsymbol%7B%5CSigma%7D_%7Bx+y%7D+%5C%5C+%5Cboldsymbol%7B%5CSigma%7D_%7By+x%7D+%26+%5Cboldsymbol%7B%5CSigma%7D_%7By+y%7D+%5Cend%7Barray%7D%5Cright%5D%5Cright%29+%5C%5C

equation?tex=p%28%5Cboldsymbol%7Bx%7D+%5Cmid+%5Cboldsymbol%7By%7D%29%3DN%5Cleft%28%5Cboldsymbol%7B%5Cmu%7D_%7Bx%7D%2B%5Cboldsymbol%7B%5CSigma%7D_%7Bx+y%7D+%5Cboldsymbol%7B%5CSigma%7D_%7By+y%7D%5E%7B-1%7D%5Cleft%28%5Cboldsymbol%7By%7D-%5Cboldsymbol%7B%5Cmu%7D_%7By%7D%5Cright%29%2C+%5Cboldsymbol%7B%5CSigma%7D_%7Bx+x%7D-%5Cboldsymbol%7B%5CSigma%7D_%7Bx+y%7D+%5Cboldsymbol%7B%5CSigma%7D_%7By+y%7D%5E%7B-1%7D+%5Cboldsymbol%7B%5CSigma%7D_%7By+x%7D%5Cright%29+%5C%5C

KF推导: ch10-1的先验展开结果中,等式右侧第一部分:

equation?tex=P%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7Bk-1%7D%2C+%5Cboldsymbol%7Bx%7D_%7B0%7D%2C+%5Cboldsymbol%7Bu%7D_%7B1%3A+k%7D%2C+%5Cboldsymbol%7Bz%7D_%7B1%3A+k-1%7D%5Cright%29%3DP%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7Bk-1%7D%2C+%5Cboldsymbol%7Bu%7D_%7Bk%7D%5Cright%29+%5C%5C

第二部分:

equation?tex=P%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk-1%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7B0%7D%2C+%5Cboldsymbol%7Bu%7D_%7B1%3A+k%7D%2C+%5Cboldsymbol%7Bz%7D_%7B1%3A+k-1%7D%5Cright%29%3DP%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk-1%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7B0%7D%2C+%5Cboldsymbol%7Bu%7D_%7B1%3A+k-1%7D%2C+%5Cboldsymbol%7Bz%7D_%7B1%3A+k-1%7D%5Cright%29+%5C%5C

对于线性高斯系统:

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+%5Cboldsymbol%7Bx%7D_%7Bk%7D%3D%5Cboldsymbol%7BA%7D_%7Bk%7D+%5Cboldsymbol%7Bx%7D_%7Bk-1%7D%2B%5Cboldsymbol%7Bu%7D_%7Bk%7D%2B%5Cboldsymbol%7Bw%7D_%7Bk%7D+%5C%5C+%5Cboldsymbol%7Bz%7D_%7Bk%7D%3D%5Cboldsymbol%7BC%7D_%7Bk%7D+%5Cboldsymbol%7Bx%7D_%7Bk%7D%2B%5Cboldsymbol%7Bv%7D_%7Bk%7D+%5Cend%7Barray%7D+%5Cquad+k%3D1%2C+%5Cldots%2C+N%5Cright.+%5C%5C

equation?tex=%5Cboldsymbol%7Bw%7D_%7Bk%7D+%5Csim+N%28%5Cmathbf%7B0%7D%2C+%5Cboldsymbol%7BR%7D%29+.+%5Cquad+%5Cboldsymbol%7Bv%7D_%7Bk%7D+%5Csim+N%28%5Cmathbf%7B0%7D%2C+%5Cboldsymbol%7BQ%7D%29+%5C%5C

KF的目标即为:

假设已知k-1时刻后验状态估计

equation?tex=%5Chat%7Bx%7D_%7Bk-1%7D 和它的协方差

equation?tex=%5Chat%7BP%7D_%7Bk-1%7D根据k时刻的输入和观测数据,确定

equation?tex=x_k的后验分布

后续推导中用上帽子

equation?tex=%5Chat%7Bx%7D_%7Bk%7D+表示后验,以下帽子

equation?tex=+%5Ccheck%7Bx%7D+ 表示先验分布

根据状态方程,可以通过k-1时刻的状态后验值得到k时刻状态的分布(先验):

equation?tex=P%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7B0%7D%2C+%5Cboldsymbol%7Bu%7D_%7B1%3A+k%7D%2C+%5Cboldsymbol%7Bz%7D_%7B1%3A+k-1%7D%5Cright%29%3DN%5Cleft%28%5Cboldsymbol%7BA%7D_%7Bk%7D+%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk-1%7D%2B%5Cboldsymbol%7Bu%7D_%7Bk%7D%2C+%5Cboldsymbol%7BA%7D_%7Bk%7D+%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk-1%7D+%5Cboldsymbol%7BA%7D_%7Bk%7D%5E%7BT%7D%2B%5Cboldsymbol%7BR%7D%5Cright%29+%5C%5C

equation?tex=%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%3D%5Cboldsymbol%7BA%7D_%7Bk%7D+%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk-1%7D%2B%5Cboldsymbol%7Bu%7D_%7Bk%7D%2C+%5Cquad+%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%3D%5Cboldsymbol%7BA%7D_%7Bk%7D+%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk-1%7D+%5Cboldsymbol%7BA%7D_%7Bk%7D%5E%7BT%7D%2B%5Cboldsymbol%7BR%7D+%5C%5C

由观测方程估计的观测数据(似然):

equation?tex=P%5Cleft%28%5Cboldsymbol%7Bz%7D_%7Bk%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7Bk%7D%5Cright%29%3DN%5Cleft%28%5Cboldsymbol%7BC%7D_%7Bk%7D+%5Cboldsymbol%7Bx%7D_%7Bk%7D%2C+%5Cboldsymbol%7BQ%7D%5Cright%29+%5C%5C

equation?tex=%5Ctext+%7B+%E7%BB%93%E6%9E%9C%E8%AE%BE%E4%B8%BA+%7D+%5Cboldsymbol%7Bx%7D_%7Bk%7D+%5Csim+N%5Cleft%28%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%2C+%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5Cright%29+%5C%5C

根据贝叶斯公式可得:(个人感觉等式右侧应该有个比例系数)

equation?tex=N%5Cleft%28%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%2C+%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5Cright%29%3DN%5Cleft%28%5Cboldsymbol%7BC%7D_%7Bk%7D+%5Cboldsymbol%7Bx%7D_%7Bk%7D%2C+%5Cboldsymbol%7BQ%7D%5Cright%29+%5Ccdot+N%5Cleft%28%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%2C+%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5Cright%29+%5C%5C

两侧都是高斯分布,讨论指数部分:

equation?tex=%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D-%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%5Cright%29%5E%7BT%7D+%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5E%7B-1%7D%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D-%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%5Cright%29%3D%5Cleft%28%5Cboldsymbol%7Bz%7D_%7Bk%7D-%5Cboldsymbol%7BC%7D_%7Bk%7D+%5Cboldsymbol%7Bx%7D_%7Bk%7D%5Cright%29%5E%7BT%7D+%5Cboldsymbol%7BQ%7D%5E%7B-1%7D%5Cleft%28%5Cboldsymbol%7Bz%7D_%7Bk%7D-%5Cboldsymbol%7BC%7D_%7Bk%7D+%5Cboldsymbol%7Bx%7D_%7Bk%7D%5Cright%29%2B%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D-%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%5Cright%29%5E%7BT%7D+%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5E%7B-1%7D%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D-%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%5Cright%29+%5C%5C

比较待求的协方差二次系数:

equation?tex=%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5E%7B-1%7D%3D%5Cboldsymbol%7BC%7D_%7Bk%7D%5E%7BT%7D+%5Cboldsymbol%7BQ%7D%5E%7B-1%7D+%5Cboldsymbol%7BC%7D_%7Bk%7D%2B%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5E%7B-1%7D+%5C%5C

定义:

equation?tex=%5Cboldsymbol%7BK%7D%3D%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Cboldsymbol%7BC%7D_%7Bk%7D%5E%7BT%7D+%5Cboldsymbol%7BQ%7D%5E%7B-1%7D+%5C%5C

equation?tex=%5Cboldsymbol%7BI%7D%3D%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Cboldsymbol%7BC%7D_%7Bk%7D%5E%7BT%7D+%5Cboldsymbol%7BQ%7D%5E%7B-1%7D+%5Cboldsymbol%7BC%7D_%7Bk%7D%2B%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5E%7B-1%7D%3D%5Cboldsymbol%7BK%7D+%5Cboldsymbol%7BC%7D_%7Bk%7D%2B%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5E%7B-1%7D+%5C%5C

equation?tex=%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%3D%5Cleft%28%5Cboldsymbol%7BI%7D-%5Cboldsymbol%7BK%7D+%5Cboldsymbol%7BC%7D_%7Bk%7D%5Cright%29+%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5C%5C

下面通过比较一次项系数,求k时刻的状态后验:

equation?tex=-2+%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%5E%7BT%7D+%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5E%7B-1%7D+%5Cboldsymbol%7Bx%7D_%7Bk%7D%3D-2+%5Cboldsymbol%7Bz%7D_%7Bk%7D%5E%7BT%7D+%5Cboldsymbol%7BQ%7D%5E%7B-1%7D+%5Cboldsymbol%7BC%7D_%7Bk%7D+%5Cboldsymbol%7Bx%7D_%7Bk%7D-2+%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%5E%7BT%7D+%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5E%7B-1%7D+%5Cboldsymbol%7Bx%7D_%7Bk%7D+%5C%5C

equation?tex=%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5E%7B-1%7D+%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%3D%5Cboldsymbol%7BC%7D_%7Bk%7D%5E%7BT%7D+%5Cboldsymbol%7BQ%7D%5E%7B-1%7D+%5Cboldsymbol%7Bz%7D_%7Bk%7D%2B%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5E%7B-1%7D+%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D+%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D+%26%3D%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Cboldsymbol%7BC%7D_%7Bk%7D%5E%7BT%7D+%5Cboldsymbol%7BQ%7D%5E%7B-1%7D+%5Cboldsymbol%7Bz%7D_%7Bk%7D%2B%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%5E%7B-1%7D+%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D+%5C%5C+%26%3D%5Cboldsymbol%7BK%7D+%5Cboldsymbol%7Bz%7D_%7Bk%7D%2B%5Cleft%28%5Cboldsymbol%7BI%7D-%5Cboldsymbol%7BK%7D+%5Cboldsymbol%7BC%7D_%7Bk%7D%5Cright%29+%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%3D%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%2B%5Cboldsymbol%7BK%7D%5Cleft%28%5Cboldsymbol%7Bz%7D_%7Bk%7D-%5Cboldsymbol%7BC%7D_%7Bk%7D+%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%5Cright%29+%5Cend%7Baligned%7D+%5C%5C

对整个KF流程进行总结:预测:

equation?tex=%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%3D%5Cboldsymbol%7BA%7D_%7Bk%7D+%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk-1%7D%2B%5Cboldsymbol%7Bu%7D_%7Bk%7D%2C+%5Cquad+%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%3D%5Cboldsymbol%7BA%7D_%7Bk%7D+%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk-1%7D+%5Cboldsymbol%7BA%7D_%7Bk%7D%5E%7BT%7D%2B%5Cboldsymbol%7BR%7D%E2%80%98+%5C%5C更新,先计算卡尔曼增益K:

equation?tex=%5Cboldsymbol%7BK%7D%3D%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Cboldsymbol%7BC%7D_%7Bk%7D%5E%7BT%7D%5Cleft%28%5Cboldsymbol%7BC%7D_%7Bk%7D+%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Cboldsymbol%7BC%7D_%7Bk%7D%5E%7BT%7D%2B%5Cboldsymbol%7BQ%7D%5Cright%29%5E%7B-1%7D+%5C%5C

然后计算后验概率的分布:

equation?tex=%5Cbegin%7Baligned%7D+%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D+%26%3D%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%2B%5Cboldsymbol%7BK%7D%5Cleft%28%5Cboldsymbol%7Bz%7D_%7Bk%7D-%5Cboldsymbol%7BC%7D_%7Bk%7D+%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%5Cright%29+%5C%5C+%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%26%3D%5Cleft%28%5Cboldsymbol%7BI%7D-%5Cboldsymbol%7BK%7D+%5Cboldsymbol%7BC%7D_%7Bk%7D%5Cright%29+%5Ccheck%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Cend%7Baligned%7D+%5C%5C

ch10-3 EKF

在k时刻,把

equation?tex=%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk-1%7D%2C+%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk-1%7D处进行线性化

equation?tex=%5Cboldsymbol%7Bx%7D_%7Bk%7D+%5Capprox+f%5Cleft%28%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk-1%7D%2C+%5Cboldsymbol%7Bu%7D_%7Bk%7D%5Cright%29%2B%5Cleft.%5Cfrac%7B%5Cpartial+f%7D%7B%5Cpartial+%5Cboldsymbol%7Bx%7D_%7Bk-1%7D%7D%5Cright%7C_%7B%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk-1%7D%7D%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk-1%7D-%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk-1%7D%5Cright%29%2B%5Cboldsymbol%7Bw%7D_%7Bk%7D+%5C%5C

equation?tex=%5Cboldsymbol%7BF%7D%3D%5Cleft.%5Cfrac%7B%5Cpartial+f%7D%7B%5Cpartial+%5Cboldsymbol%7Bx%7D_%7Bk-1%7D%7D%5Cright%7C_%7B%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk-1%7D%7D+%5C%5C

equation?tex=%5Cboldsymbol%7Bz%7D_%7Bk%7D+%5Capprox+h%5Cleft%28%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%5Cright%29%2B%5Cleft.%5Cfrac%7B%5Cpartial+h%7D%7B%5Cpartial+%5Cboldsymbol%7Bx%7D_%7Bk%7D%7D%5Cright%7C_%7B%5Cboldsymbol%7B%5Cboldsymbol+%7B+x+%7D%7D_%7Bk%7D%7D%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D-%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%5Cright%29%2B%5Cboldsymbol%7Bn%7D_%7Bk%7D+%5C%5C

equation?tex=%5Cboldsymbol%7BH%7D%3D%5Cleft.%5Cfrac%7B%5Cpartial+h%7D%7B%5Cpartial+%5Cboldsymbol%7Bx%7D_%7Bk%7D%7D%5Cright%7C_%7B%5Ccheck%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%7D+%5C%5C

预测步骤:

equation?tex=P%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7B0%7D%2C+%5Cboldsymbol%7Bu%7D_%7B1%3A+k%7D%2C+%5Cboldsymbol%7Bz%7D_%7B0%3A+k-1%7D%5Cright%29%3DN%5Cleft%28f%5Cleft%28%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk-1%7D%2C+%5Cboldsymbol%7Bu%7D_%7Bk%7D%5Cright%29%2C+%5Cboldsymbol%7BF%7D+%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk-1%7D+%5Cboldsymbol%7BF%7D%5E%7B%5Cmathrm%7BT%7D%7D%2B%5Cboldsymbol%7BR%7D_%7Bk%7D%5Cright%29+%5C%5C

equation?tex=%5Coverline%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%3Df%5Cleft%28%5Chat%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk-1%7D%2C+%5Cboldsymbol%7Bu%7D_%7Bk%7D%5Cright%29%2C+%5Cquad+%5Coverline%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D%3D%5Cboldsymbol%7BF%7D+%5Chat%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Cboldsymbol%7BF%7D%5E%7BT%7D%2B%5Cboldsymbol%7BR%7D_%7Bk%7D+%5C%5C

根据观测方程:

equation?tex=P%5Cleft%28%5Cboldsymbol%7Bz%7D_%7Bk%7D+%5Cmid+%5Cboldsymbol%7Bx%7D_%7Bk%7D%5Cright%29%3DN%5Cleft%28h%5Cleft%28%5Coverline%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%5Cright%29%2B%5Cboldsymbol%7BH%7D%5Cleft%28%5Cboldsymbol%7Bx%7D_%7Bk%7D-%5Coverline%7B%5Cboldsymbol%7Bx%7D%7D_%7Bk%7D%5Cright%29%2C+%5Cboldsymbol%7BQ%7D_%7Bk%7D%5Cright%29+%5C%5C

中间推导同KF,得到EKF的卡尔曼增益

equation?tex=+%5Cboldsymbol%7BK%7D_k

equation?tex=%5Cboldsymbol%7BK%7D_%7Bk%7D%3D%5Coverline%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Cboldsymbol%7BH%7D%5E%7B%5Cmathrm%7BT%7D%7D%5Cleft%28%5Cboldsymbol%7BH%7D+%5Coverline%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Cboldsymbol%7BH%7D%5E%7B%5Cmathrm%7BT%7D%7D%2B%5Cboldsymbol%7BQ%7D_%7Bk%7D%5Cright%29%5E%7B-1%7D+%5C%5C

后验概率:

equation?tex=%5Cboldsymbol%7BK%7D_%7Bk%7D%3D%5Coverline%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Cboldsymbol%7BH%7D%5E%7B%5Cmathrm%7BT%7D%7D%5Cleft%28%5Cboldsymbol%7BH%7D+%5Coverline%7B%5Cboldsymbol%7BP%7D%7D_%7Bk%7D+%5Cboldsymbol%7BH%7D%5E%7B%5Cmathrm%7BT%7D%7D%2B%5Cboldsymbol%7BQ%7D_%7Bk%7D%5Cright%29%5E%7B-1%7D+%5C%5C

ch10-4 Bundle Adjustment求解从视觉重建中提炼出最优的3D模型和相机参数(内参数和外参数):从每一个特征点反射出来的几束光线(bundle of light rays),在我们把相机姿态和特征点空间位置做出最优的调整(adjustment)之后,最后收束到相机光心的过程。投影模型回顾(只考虑径向畸变)

equation?tex=z%3Dh%28x%2C+y%29+%5C%5C

equation?tex=%5Cboldsymbol%7Bx%7D为相机位姿,外参

equation?tex=%5Cboldsymbol%7BR%7D,

equation?tex=%5Cboldsymbol%7Bt%7D

equation?tex=%5Cboldsymbol%7By%7D为路标,即三维点

equation?tex=%5Cboldsymbol%7Bp%7D

equation?tex=%5Cboldsymbol%7Bz%7D为观测数据

equation?tex=%5Cboldsymbol%7Bz%7D+%5Ctriangleq%5Cleft%5Bu_%7Bs%7D%2C+v_%7Bs%7D%5Cright%5D%5E%7BT%7D

equation?tex=e%3Dz-h%28%5Cxi%2C+p%29+%5C%5C

整体Cost Function:

equation?tex=%5Cfrac%7B1%7D%7B2%7D+%5Csum_%7Bi%3D1%7D%5E%7Bm%7D+%5Csum_%7Bj%3D1%7D%5E%7Bn%7D%5Cleft%5C%7Ce_%7Bi+j%7D%5Cright%5C%7C%5E%7B2%7D%3D%5Cfrac%7B1%7D%7B2%7D+%5Csum_%7Bi%3D1%7D%5E%7Bm%7D+%5Csum_%7Bj%3D1%7D%5E%7Bn%7D%5Cleft%5C%7Cz_%7Bi+j%7D-h%5Cleft%28%5Cxi_%7Bi%7D%2C+p_%7Bj%7D%5Cright%29%5Cright%5C%7C%5E%7B2%7D+%5C%5CBA求解 全部待优化变量:

equation?tex=%5Cboldsymbol%7Bx%7D%3D%5Cleft%5B%5Cboldsymbol%7B%5Cxi%7D_%7B1%7D%2C+%5Cldots%2C+%5Cboldsymbol%7B%5Cxi%7D_%7Bm%7D%2C+%5Cboldsymbol%7Bp%7D_%7B1%7D%2C+%5Cboldsymbol%7B%5Cldots%7D%2C+%5Cboldsymbol%7Bp%7D_%7Bn%7D%5Cright%5D%5E%7BT%7D+%5C%5C

equation?tex=%5Cfrac%7B1%7D%7B2%7D%5C%7Cf%28%5Cboldsymbol%7Bx%7D%2B%5CDelta+%5Cboldsymbol%7Bx%7D%29%5C%7C%5E%7B2%7D+%5Capprox+%5Cfrac%7B1%7D%7B2%7D+%5Csum_%7Bi%3D1%7D%5E%7Bm%7D+%5Csum_%7Bj%3D1%7D%5E%7Bn%7D%5Cleft%5C%7C%5Cboldsymbol%7Be%7D_%7Bi+j%7D%2B%5Cboldsymbol%7BF%7D_%7Bi+j%7D+%5CDelta+%5Cboldsymbol%7B%5Cxi%7D_%7Bi%7D%2B%5Cboldsymbol%7BE%7D_%7Bi+j%7D+%5CDelta+%5Cboldsymbol%7Bp%7D_%7Bj%7D%5Cright%5C%7C%5E%7B2%7D+%5C%5C

equation?tex=F_%7Bij%7D表示代价函数对相机姿态偏导,

equation?tex=E_%7Bij%7D表示对路标点位置的偏导,具体形式参见上篇的ch7-7

equation?tex=%5Cboldsymbol%7Bx%7D_%7Bc%7D%3D%5Cleft%5B%5Cboldsymbol%7B%5Cxi%7D_%7B1%7D%2C+%5Cboldsymbol%7B%5Cxi%7D_%7B2%7D%2C+%5Cldots%2C+%5Cboldsymbol%7B%5Cxi%7D_%7Bm%7D%5Cright%5D%5E%7BT%7D+%5Cin+%5Cmathbb%7BR%7D%5E%7B6+m%7D+%5C%5C

equation?tex=%5Cboldsymbol%7Bx%7D_%7Bp%7D%3D%5Cleft%5B%5Cboldsymbol%7Bp%7D_%7B1%7D%2C+%5Cboldsymbol%7Bp%7D_%7B2%7D%2C+%5Cldots%2C+%5Cboldsymbol%7Bp%7D_%7Bn%7D%5Cright%5D%5E%7BT%7D+%5Cin+%5Cmathbb%7BR%7D%5E%7B3+n%7D+%5C%5C

equation?tex=%5Cfrac%7B1%7D%7B2%7D%5C%7Cf%28%5Cboldsymbol%7Bx%7D%2B%5CDelta+%5Cboldsymbol%7Bx%7D%29%5C%7C%5E%7B2%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5C%7C%5Cboldsymbol%7Be%7D%2B%5Cboldsymbol%7BF%7D+%5CDelta+%5Cboldsymbol%7Bx%7D_%7Bc%7D%2B%5Cboldsymbol%7BE%7D+%5CDelta+%5Cboldsymbol%7Bx%7D_%7Bp%7D%5Cright%5C%7C%5E%7B2%7D+%5C%5C

equation?tex=J%3D%5BF+E%5D+%5C%5C

G-N法的增量方程及H矩阵:

equation?tex=H+%5CDelta+x%3Dg+%5C%5C

equation?tex=H%3DJ%5E%7BT%7D+J%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bll%7D+F%5E%7BT%7D+F+%26+F%5E%7BT%7D+%5Cboldsymbol%7BE%7D+%5C%5C+E%5E%7BT%7D+%5Cboldsymbol%7BF%7D+%26+%5Cboldsymbol%7BE%7D%5E%7BT%7D+%5Cboldsymbol%7BE%7D+%5Cend%7Barray%7D%5Cright%5D+%5C%5C

ch10-5 H矩阵稀疏性及边缘化稀疏性起因及图解 对第

equation?tex=i个相机位姿和第

equation?tex=j个路标

equation?tex=J_%7Bi+j%7D%28x%29%3D%5Cleft%280_%7B2+%5Ctimes+6%7D%2C+%5Cldots+0_%7B2+%5Ctimes+6%7D%2C+%5Cfrac%7B%5Cpartial+e_%7Bi+j%7D%7D%7B%5Cpartial+%5Cxi_%7Bi%7D%7D%2C+0_%7B2+%5Ctimes+6%7D%2C+%5Cldots+0_%7B2+%5Ctimes+3%7D%2C+%5Cldots+0_%7B2+%5Ctimes+3%7D%2C+%5Cfrac%7B%5Cpartial+e_%7Bi+j%7D%7D%7B%5Cpartial+p_%7Bj%7D%7D%2C+0_%7B2+%5Ctimes+3%7D%2C+%5Cldots+0_%7B2+%5Ctimes+3%7D%5Cright%29+%5C%5C

equation?tex=%5Cboldsymbol%7BJ%7D_%7Bi+j%7D 只在

equation?tex=+i%2C+j处有非零块,对整体

equation?tex=H

equation?tex=%5Cboldsymbol%7BH%7D%3D%5Csum_%7Bi%2C+j%7D+%5Cboldsymbol%7BJ%7D_%7Bi+j%7D%5E%7BT%7D+%5Cboldsymbol%7BJ%7D_%7Bi+j%7D+%5C%5C

equation?tex=%5Cboldsymbol%7BH%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bll%7D+%5Cboldsymbol%7BH%7D_%7B11%7D+%26+%5Cboldsymbol%7BH%7D_%7B12%7D+%5C%5C+%5Cboldsymbol%7BH%7D_%7B21%7D+%26+%5Cboldsymbol%7BH%7D_%7B22%7D+%5Cend%7Barray%7D%5Cright%5D+%5C%5C

总结:

equation?tex=H_%7B11%7D

equation?tex=H_%7B22%7D都是对角阵,

equation?tex=H_%7B12%7D

equation?tex=H_%7B21%7D稀疏还是稠密视具体观测数据而定边缘化(Marginalization)

本质:舒尔消元(Schur trick)

equation?tex=H矩阵区域划分图示:

equation?tex=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D+B+%26+E+%5C%5C+E%5E%7BT%7D+%26+C+%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bl%7D+%5CDelta+x_%7Bc%7D+%5C%5C+%5CDelta+x_%7Bp%7D+%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bl%7D+v+%5C%5C+w+%5Cend%7Barray%7D%5Cright%5D+%5C%5C

其中

equation?tex=B为对角阵,每个对角块维度和相机参数维度相同,对角块个数为相机变量个数,

equation?tex=C矩阵为

equation?tex=3%5Ctimes3的三维空间路标点矩阵构成的对角块矩阵。 增量方程运用高斯消元对H进行消元:

equation?tex=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D+I+%26+-E+C%5E%7B-1%7D+%5C%5C+0+%26+I+%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D+B+%26+E+%5C%5C+E%5E%7BT%7D+%26+C+%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D+%5CDelta+x_%7Bc%7D+%5C%5C+%5CDelta+x_%7Bp%7D+%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D+I+%26+-E+C%5E%7B-1%7D+%5C%5C+0+%26+I+%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bl%7D+v+%5C%5C+w+%5Cend%7Barray%7D%5Cright%5D+%5C%5C

equation?tex=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D+B-E+C%5E%7B-1%7D+E%5E%7BT%7D+%26+0+%5C%5C+E%5E%7BT%7D+%26+C+%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D+%5CDelta+x_%7Bc%7D+%5C%5C+%5CDelta+x_%7Bp%7D+%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bl%7D+v-E+C%5E%7B-1%7D+%5Cboldsymbol%7Bw%7D+%5C%5C+w+%5Cend%7Barray%7D%5Cright%5D+%5C%5C

equation?tex=%5Cleft%5B%5Cboldsymbol%7BB%7D-%5Cboldsymbol%7BE%7D+%5Cboldsymbol%7BC%7D%5E%7B-1%7D+%5Cboldsymbol%7BE%7D%5E%7BT%7D%5Cright%5D+%5CDelta+%5Cboldsymbol%7Bx%7D_%7Bc%7D%3D%5Cboldsymbol%7Bv%7D-%5Cboldsymbol%7BE%7D+%5Cboldsymbol%7BC%7D%5E%7B-1%7D+%5Cboldsymbol%7Bw%7D+%5C%5C

上式解得

equation?tex=%5CDelta+%5Cboldsymbol%7Bx_c%7D代入原方程,之后求解

equation?tex=%5CDelta+%5Cboldsymbol%7Bx%7D_%7Bp%7D%3D%5Cboldsymbol%7BC%7D%5E%7B-1%7D%5Cleft%28%5Cboldsymbol%7Bw%7D-%5Cboldsymbol%7BE%7D%5E%7BT%7D+%5CDelta+%5Cboldsymbol%7Bx%7D_%7Bc%7D%5Cright%29+

CH11 后端2

ch11-1 Pose Graph的优化

相机位姿用

equation?tex=%5Cboldsymbol%7B%5Cxi%7D_%7B1%7D%2C+%5Cldots%2C+%5Cboldsymbol%7B%5Cxi%7D_%7Bn%7D表示

equation?tex=%5Cbegin%7Barray%7D%7Bc%7D+%5CDelta+%5Cboldsymbol%7B%5Cxi%7D_%7Bi+j%7D%3D%5Cboldsymbol%7B%5Cxi%7D_%7Bi%7D%5E%7B-1%7D+%5Ccirc+%5Cboldsymbol%7B%5Cxi%7D_%7Bj%7D%3D%5Cln+%5Cleft%28%5Cexp+%5Cleft%28%5Cleft%28-%5Cboldsymbol%7B%5Cxi%7D_%7Bi%7D%5Cright%29%5E%7B%5Cwedge%7D%5Cright%29+%5Cexp+%5Cleft%28%5Cboldsymbol%7B%5Cxi%7D_%7Bj%7D%5E%7B%5Cwedge%7D%5Cright%29%5Cright%29%5E%7B%5Cvee%7D+%5C%5C+%5CDelta+%5Cboldsymbol%7BT%7D_%7Bi+j%7D%3D%5Cboldsymbol%7BT%7D_%7Bi%7D%5E%7B-1%7D+%5Cboldsymbol%7BT%7D_%7Bj%7D+%5Cend%7Barray%7D+%5C%5C

设立最小二乘误差:

equation?tex=%5Cbegin%7Baligned%7D+%5Cboldsymbol%7Be%7D_%7Bi+j%7D+%26%3D%5Cln+%5Cleft%28%5CDelta+%5Cboldsymbol%7BT%7D_%7Bi+j%7D%5E%7B-1%7D+%5Cboldsymbol%7BT%7D_%7Bi%7D%5E%7B-1%7D+%5Cboldsymbol%7BT%7D_%7Bj%7D%5Cright%29%5E%7B%5Cvee%7D+%5C%5C+%26%3D%5Cln+%5Cleft%28%5Cexp+%5Cleft%28%5Cleft%28-%5Cboldsymbol%7B%5Cxi%7D_%7Bi+j%7D%5Cright%29%5E%7B%5Cwedge%7D%5Cright%29+%5Cexp+%5Cleft%28%5Cleft%28-%5Cboldsymbol%7B%5Cxi%7D_%7Bi%7D%5Cright%29%5E%7B%5Cwedge%7D%5Cright%29+%5Cexp+%5Cleft%28%5Cboldsymbol%7B%5Cxi%7D_%7Bj%7D%5E%7B%5Cwedge%7D%5Cright%29%5Cright%29%5E%7B%5Cvee%7D+%5Cend%7Baligned%7D+%5C%5C

其中两个待优化的变量,

equation?tex=%5Cxi_%7Bi%7D

equation?tex=%5Cxi_%7Bj%7D,各给一个左扰动后,误差变为

equation?tex=%5Chat%7Be%7D_%7Bi+j%7D%3D%5Cln+%5Cleft%28T_%7Bi+j%7D%5E%7B-1%7D+%5Cboldsymbol%7BT%7D_%7Bi%7D%5E%7B-1%7D+%5Cexp+%5Cleft%28%5Cleft%28-%5Cdelta+%5Cboldsymbol%7B%5Cxi%7D_%7Bi%7D%5Cright%29%5E%7B%5Cwedge%7D%5Cright%29+%5Cexp+%5Cleft%28%5Cdelta+%5Cboldsymbol%7B%5Cxi%7D_%7Bj%7D%5E%7B%5Cwedge%7D%5Cright%29+%5Cboldsymbol%7BT%7D_%7Bj%7D%5Cright%29%5E%7B%5Cvee%7D+%5C%5C

运用:

equation?tex=%5Cbegin%7Barray%7D%7Bl%7D+%5Cexp+%5Cleft%28%28%5Coperatorname%7BAd%7D%28%5Cboldsymbol%7BT%7D%29+%5Cboldsymbol%7B%5Cxi%7D%29%5E%7B%5Cwedge%7D%5Cright%29%3D%5Cboldsymbol%7BT%7D+%5Cexp+%5Cleft%28%5Cboldsymbol%7B%5Cxi%7D%5E%7B%5Cwedge%7D%5Cright%29+%5Cboldsymbol%7BT%7D%5E%7B-1%7D+.+%5C%5C+%5Cexp+%5Cleft%28%5Cboldsymbol%7B%5Cxi%7D%5E%7B%5Cwedge%7D%5Cright%29+%5Cboldsymbol%7BT%7D%3D%5Cboldsymbol%7BT%7D+%5Cexp+%5Cleft%28%5Cleft%28%5Coperatorname%7BAd%7D%5Cleft%28%5Cboldsymbol%7BT%7D%5E%7B-1%7D%5Cright%29+%5Cboldsymbol%7B%5Cxi%7D%5Cright%29%5E%7B%5Cwedge%7D%5Cright%29+%5Cend%7Barray%7D+%5C%5C

将扰动移动到到最右:

equation?tex=%5Cbegin%7Baligned%7D+%5Chat%7Be%7D_%7Bi+j%7D+%26%3D%5Cln+%5Cleft%28%5Cboldsymbol%7BT%7D_%7Bi+j%7D%5E%7B-1%7D+%5Cboldsymbol%7BT%7D_%7Bi%7D%5E%7B-1%7D+%5Cexp+%5Cleft%28%5Cleft%28-%5Cboldsymbol%7B%5Cdelta%7D+%5Cboldsymbol%7B%5Cxi%7D_%7Bi%7D%5Cright%29%5E%7B%5Cwedge%7D%5Cright%29+%5Cexp+%5Cleft%28%5Cdelta+%5Cboldsymbol%7B%5Cxi%7D_%7Bj%7D%5E%7B%5Cwedge%7D%5Cright%29+%5Cboldsymbol%7BT%7D_%7Bj%7D%5Cright%29%5E%7B%5Cvee%7D+%5C%5C+%26%3D%5Cln+%5Cleft%28%5Cboldsymbol%7BT%7D_%7Bi+j%7D%5E%7B-1%7D+%5Cboldsymbol%7BT%7D_%7Bi%7D%5E%7B-1%7D+%5Cboldsymbol%7BT%7D_%7Bj%7D+%5Cexp+%5Cleft%28%5Cleft%28-%5Coperatorname%7BAd%7D%5Cleft%28%5Cboldsymbol%7BT%7D_%7Bj%7D%5E%7B-1%7D%5Cright%29+%5Cboldsymbol%7B%5Cdelta%7D+%5Cboldsymbol%7B%5Cxi%7D_%7Bi%7D%5Cright%29%5E%7B%5Cwedge%7D%5Cright%29+%5Cexp+%5Cleft%28%5Cleft%28%5Coperatorname%7BAd%7D%5Cleft%28%5Cboldsymbol%7BT%7D_%7Bj%7D%5E%7B-1%7D%5Cright%29+%5Cboldsymbol%7B%5Cdelta%7D+%5Cboldsymbol%7B%5Cxi%7D_%7Bj%7D%5Cright%29%5E%7B%5Cwedge%7D%5Cright%29%5E%7B%5Cvee%7D%5Cright.%5C%5C+%26+%5Capprox+%5Cln+%5Cleft%28%5Cboldsymbol%7BT%7D_%7Bi+j%7D%5E%7B-1%7D+%5Cboldsymbol%7BT%7D_%7Bi%7D%5E%7B-1%7D+%5Cboldsymbol%7BT%7D_%7Bj%7D%5Cleft%5B%5Cboldsymbol%7BI%7D-%5Cleft%28%5Coperatorname%7BAd%7D%5Cleft%28%5Cboldsymbol%7BT%7D_%7Bj%7D%5E%7B-1%7D%5Cright%29+%5Cboldsymbol%7B%5Cdelta%7D+%5Cboldsymbol%7B%5Cxi%7D_%7Bi%7D%5Cright%29%5E%7B%5Cwedge%7D%2B%5Cleft%28%5Coperatorname%7BAd%7D%5Cleft%28%5Cboldsymbol%7BT%7D_%7Bj%7D%5E%7B-1%7D%5Cright%29+%5Cboldsymbol%7B%5Cdelta%7D+%5Cboldsymbol%7B%5Cxi%7D_%7Bj%7D%5Cright%29%5E%7B%5Cwedge%7D%5Cright%5D%5Cright%29%5E%7B%5Cvee%7D+%5C%5C+%26+%5Capprox+%5Cboldsymbol%7Be%7D_%7Bi+j%7D%2B%5Cfrac%7B%5Cpartial+%5Cboldsymbol%7Be%7D_%7Bi+j%7D%7D%7B%5Cpartial+%5Cboldsymbol%7B%5Cdelta%7D+%5Cxi_%7Bi%7D%7D+%5Cboldsymbol%7B%5Cdelta%7D+%5Cboldsymbol%7B%5Cxi%7D_%7Bi%7D%2B%5Cfrac%7B%5Cpartial+%5Cboldsymbol%7Be%7D_%7Bi+j%7D%7D%7B%5Cpartial+%5Cboldsymbol%7B%5Cdelta%7D+%5Cxi_%7Bj%7D%7D+%5Cboldsymbol%7B%5Cdelta%7D+%5Cboldsymbol%7B%5Cxi%7D_%7Bj%7D+%5Cend%7Baligned%7D+%5C%5C

根据李代数求导法则,求出误差关于两个位姿的雅可比矩阵

equation?tex=%5Cbegin%7Barray%7D%7Bl%7D+%5Cfrac%7B%5Cpartial+%5Cboldsymbol%7Be%7D_%7Bi+j%7D%7D%7B%5Cpartial+%5Cboldsymbol%7B%5Cdelta%7D+%5Cboldsymbol%7B%5Cxi%7D_%7Bi%7D%7D%3D-%5Cmathcal%7BJ%7D_%7Br%7D%5E%7B-1%7D%5Cleft%28%5Cboldsymbol%7Be%7D_%7Bi+j%7D%5Cright%29+%5Cmathrm%7BAd%7D%5Cleft%28%5Cboldsymbol%7BT%7D_%7Bj%7D%5E%7B-1%7D%5Cright%29+%5C%5C+%5Cfrac%7B%5Cpartial+%5Cboldsymbol%7Be%7D_%7Bi+j%7D%7D%7B%5Cpartial+%5Cboldsymbol%7B%5Cdelta%7D+%5Cboldsymbol%7B%5Cxi%7D_%7Bj%7D%7D%3D%5Cmathcal%7BJ%7D_%7Br%7D%5E%7B-1%7D%5Cleft%28%5Cboldsymbol%7Be%7D_%7Bi+j%7D%5Cright%29+%5Cmathrm%7BAd%7D%5Cleft%28%5Cboldsymbol%7BT%7D_%7Bj%7D%5E%7B-1%7D%5Cright%29+%5Cend%7Barray%7D+%5C%5C

误差接近于零时,可以将左右雅可比近似取为

equation?tex=%5Cboldsymbol%7BI%7D或者

equation?tex=%5Cmathcal%7BJ%7D_%7Br%7D%5E%7B-1%7D%5Cleft%28%5Cboldsymbol%7Be%7D_%7Bi+j%7D%5Cright%29+%5Capprox+%5Cboldsymbol%7BI%7D%2B%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D+%5Cphi_%7Be%7D%5E%7B%5Cwedge%7D+%26+%5Crho_%7Be%7D%5E%7B%5Cwedge%7D+%5C%5C+%5Cmathbf%7B0%7D+%26+%5Cphi_%7Be%7D%5E%7B%5Cwedge%7D+%5Cend%7Barray%7D%5Cright%5D+%5C%5C

之后记

equation?tex=%5Cmathcal%7BE%7D为所有边的集合,总体目标函数为:

equation?tex=%5Cmin+_%7B%5Cboldsymbol%7B%5Cxi%7D%7D+%5Cfrac%7B1%7D%7B2%7D+%5Csum_%7Bi%2C+j+%5Cin+%5Cmathcal%7BE%7D%7D+%5Cboldsymbol%7Be%7D_%7Bi+j%7D%5E%7BT%7D+%5Cboldsymbol%7B%5CSigma%7D_%7Bi+j%7D%5E%7B-1%7D+%5Cboldsymbol%7Be%7D_%7Bi+j%7D+%5C%5C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值