diffusion初探——使用hugging face镜像网站所遇到的问题


在这里插入图片描述

序言

近期hugging face官网无法直接从国内访问(可用梯子解决),故无法像之前方法在服务器上直接访问,本文采取的方法是:使用国内替换原hugging face网站,https://hf-mirror.com/
但这样势必会带来一些问题,这里将使用DreamBooth生成“土豆先生”作为示例,逐一描述本人遇到的问题:本人刚接触diffusion,不喜勿喷)

问题

1.登录问题

from huggingface_hub import notebook_login
notebook_login()

以往运行上述代码,便可弹出一个窗口,输入token即可登录,
image.png
而现在报错:
image.png
查找原因发现是

“Ipywidgets (Vbox) not showing up on Jupyter notebook”

但并非Ipywidgets,笔者尝试了重新安装Ipywidgets和安装有关插件,但并没有效果,最后想到是网络原因,更改镜像源:

import os
#更改huggingface网址
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com/'
# 每次使用均要重新设置,不如写入.bashrc,则无需反复写入(linux代码如下:)
!echo 'export HF_ENDPOINT="https://hf-mirror.com"' >> ~/.bashrc

image.png

2.预训练参数载入问题

在使用DiffusionPipeline.from_pretrained时,发现无法找到对应的url,即:url为https://hf-mirror.com//api/models/sd-dreambooth-library/mr-potato-head,但实际是https://hf-mirror.com/sd-dreambooth-library/mr-potato-head,多了“/api/models/”,尝试通过继承的方式解决,未果!
有知道解决的小伙伴在评论区留言,感谢!

from diffusers import DiffusionPipeline
model_id = "sd-dreambooth-library/mr-potato-head"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(
    device
)

image.png
遂采用离线下载的方式进行实现:(注意只使用本地文件 local_files_only = True)

from diffusers import DiffusionPipeline
# Check out https://huggingface.co/sd-dreambooth-library for loads of models from the community
model_id = "/root/lanyun-tmp/data"
# model_id = "sd-dreambooth-library/mr-potato-head"

# Load the pipeline 
# 只使用本地文件 local_files_only = True
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16,local_files_only = True).to(
    device
)

image.png

3.离线下载问题

主要推荐 使用huggingface-cli下载数据,–resume-download是模型名字,–local-dir是本地地址。

!huggingface-cli download --resume-download sd-dreambooth-library/mr-potato-head --local-dir /root/lanyun-tmp/data  

使用huggingface-cli下载数据

huggingface-cli 隶属于 huggingface_hub
库,不仅可以下载模型、数据,还可以可以登录huggingface、上传模型、数据等。huggingface-cli
属于官方工具,其长期支持肯定是最好的。优先推荐!
–local-dir-use-symlinks False
参数可选,因为huggingface的工具链默认会使用符号链接来存储下载的文件,导致–local-dir指定的目录中都是一些“链接文件”,真实模型则存储在~/.cache/huggingface下,如果不喜欢这个可以用
–local-dir-use-symlinks False取消这个逻辑。
参考链接:https://zhuanlan.zhihu.com/p/663712983

但笔者在–local-dir-use-symlinks
False时,发现其只会存储在~/.cache/huggingface下,且不完整,故取消了。

使用git lfs下载

方法简单但网络连接不好:

sudo apt-get install git-lfs
git clone https://hf-mirror.com/johnowhitaker/ddpm-butterflies-32px

推荐先GIT_LFS_SKIP_SMUDGE=1 git clone(跳过下载 LFS 文件)

其次再对大文件用第三方、成熟的多线程下载工具,Linux 和 Mac OS 推荐hfd脚本+aria2c,Windows 推荐
IDM。用第三方工具的好处是,下载上百GB的模型、数据集,你可以放个一晚上,第二天就下载好了,而不是第二天早晨发现下载了10%断了还得继续。

笔者下载七十多MB的.bin文件还给我断了,只下小的还行,特别是只有几个LFS文件时,简单好用!

代码:

# !export HF_ENDPOINT='https://hf-mirror.com/'
import os
#更改huggingface网址
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com/'
# !echo 'export HF_ENDPOINT="https://hf-mirror.com"' >> ~/.bashrc
from huggingface_hub import notebook_login
notebook_login()

%pip install -U diffusers datasets transformers accelerate ftfy pyarrow==9.0.0 matplotlib

import numpy as np
import torch
import torch.nn.functional as F
from matplotlib import pyplot as plt
from PIL import Image
# Mac users may need device = 'mps' (untested)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

#数据下载
!huggingface-cli download --resume-download sd-dreambooth-library/mr-potato-head --local-dir /root/lanyun-tmp/data  

# 观察采样步骤数量和结果关系
prompt = "an abstract oil painting of sks mr potato head by picasso"
# prompt = "an beautiful lady walk in the street on a sunny day"
#num_inference_steps 采样步骤数量,guidance_scale 输出与提示的匹配程度
num_list_length = np.arange(30,130,10)
images = []
for i in num_list_length:
    image = pipe(prompt, num_inference_steps=i, guidance_scale=0.7).images[0]
    images.append(image)

#可视化
# make_grid(images)
import matplotlib.pyplot as plt
# 创建一个新的 matplotlib 图片和子图,设置每个子图的大小为10x10
fig, axs = plt.subplots(1, len(images), figsize=(10*len(images), 10))
# 遍历每个图片和对应的子图
for img, ax, size in zip(images, axs, num_list_length):
    # 显示图片
    ax.imshow(img)
    # 移除坐标轴
    ax.axis('off')
    # 在图片下方添加标题
    ax.set_title(str(size),fontsize=20)
# 显示所有的子图
plt.show()
# 保存图片到文件
fig.savefig('采样步骤数量和结果关系.png')

215c20b94285bb4a17da13b57cec4b5.png

### 下载并使用Hugging Face上的Stable Diffusion模型 为了从Hugging Face下载并使用Stable Diffusion模型,可以遵循如下方法: 安装必要的库是第一步操作。这通常涉及`transformers`和`diffusers`这两个包。可以通过pip命令完成此过程。 ```bash pip install transformers diffusers ``` 加载模型时,利用`diffusers`库中的`DiffusionPipeline`类非常方便。该类允许指定想要使用的特定版本的Stable Diffusion模型以及所期望的结果类型——例如文本到图像生成。下面是一个简单的例子来展示这一流程[^1]。 ```python from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16) pipeline.to("cuda") # 如果有GPU支持的话 ``` 上述代码片段创建了一个基于CUDA优化过的管道实例用于加速计算性能;如果硬件条件不允许,则可以选择不传递`.to("cuda")`这部分参数,默认情况下会在CPU上运行。 对于输入处理部分,正如提到过的内容那样,当采用classifier-free guidance机制时,需要准备两份相同的潜在向量副本分别代表有条件指导下的样本与无条件情况下的样本[^2]。这意味着,在实际应用过程中可能要构建类似的逻辑结构以适应具体的项目需求。 最后值得注意的是权限管理方面的问题。某些时候部署环境可能会涉及到文件系统的读写访问控制列表(ACL),此时应当确保应用程序拥有足够的权限去执行所需的操作,比如修改web UI目录所属用户组等设置[^3]。 通过以上步骤就可以成功地从Hugging Face平台获取并启动一个可用的Stable Diffusion模型来进行各种创意性的尝试了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值