协惯量分析(CoIA)
协惯量分析(co-intertia anaysis ,CoIA)是一种多元统计方法和排序方法,它计算两个数据集内变量交叉的协方差矩阵,找出两种数据集空间中存在的协同结构,并将这两种数据集的变量投影到同一空间(也叫协惯量平面,Co-incritia plane)。CoIA用于衡量两组数据集之间的一致性,它所分析的两数据集之间无解释变量与响应变量之分,二者无解释与被解释关系。CoIA分析与偏最小二乘回归相关联,是经典回归的可靠替代方法,对于物种-环境关系的确立,CoIA无需考虑对环境变量数量的限制。CoIA分析在生物学领域的多组学研究中应用广泛,如物种-环境的交互(微生物群落)、确定两组环境变量的相关性或者物种间的共变(微生物群落)、物种组成与功能的关系以及群落功能的一致性等。
应用举例
Fig. 2 Co-inertia analysis of candidate and non-candidate climate-selected loci of Carex gayana considering the entire study area and each river basin separately. Each arrow of the CoIA plots corresponds to a single individual, denoting the position of its genetic data for non-candidate (origins of the arrows) and candidate climate-selected (arrowheads) loci.(Genome-wide genetic diversity yields insights into genomic responses of candidate climate-selected loci in an Ande