paper:Attention Attention Everywhere: Monocular Depth Prediction with Skip Attention
1、Skip Attention
现有方法在融合编码器和解码器特征时,通常使用特征图拼接以及卷积操作,但卷积核权重固定,限制了语义信息的流动,导致深度预测不准确。为此,这篇论文提出一种 跳跃注意力(Skip Attention),Skip Attention 旨在解决这个问题,通过窗口化交叉注意力机制,有效地融合编码器和解码器特征,提高深度预测的准确性。
Skip Attention 模块通过利用窗口化交叉注意力,计算像素查询之间的自相似度,并关注更长的范围,从而有效地融合编码器和解码器特征。
对于输入X,Skip Attention 的实现过程:
- 特征图处理:首先,对编码器特征图和解码器特征图进行卷积操作,确保它们的通道数一致。使用 MLP 层分别从编码器特征图和解码器特征图中提取查询矩阵 (Q)、键矩阵 (K) 和值矩阵 (V)。
- 窗口划分:然后,将查询矩阵、键矩阵和值矩阵划分为大小为 WxW 的窗口,其中 W 是预定义的窗口大小。
- 窗口内交叉注意力:其次,对每个窗口内的查询矩阵和键矩阵进行自注意力计算,得到注意力权重。将注意力权重与值矩阵相乘,得到每个查询的加权值。使用 softmax 函数将注意力权重归一化,使其总和为 1。
- 窗口重组:将每个窗口内的加权值重新排列,恢复到原始的像素级位置。这一步确保了注意力计算结果能够正确地反映每个像素的特征。
- 多头注意力机制:将像素查询分解为多个头,并对每个头分别进行注意力计算。在这之后,再将多头注意力计算结果进行拼接,并使用 MLP 层进行特征聚合。
- 输出:最后,将注意力计算结果与原始像素查询进行残差连接,并使用 LayerNorm 层进行归一化。
相比于基于卷积的跳过连接,Skip Attention 模块可以更好地融合具有长距离依赖关系的解码器特征,从而提高深度预测的准确性。除此之外,Skip Attention 模块可以有效地利用全局上下文信息,从而提高模型的泛化能力。
Skip Attention 结构图:
2、代码实现
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import numpy as np
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
class Mlp(nn.Module):
""" Multilayer perceptron."""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
def __init__(self, dim, window_size, num_heads, v_dim, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(v_dim, v_dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, v, mask=None):
B_, N, C = x.shape
q = self.q(x).view(B_, N, self.num_heads, -1).transpose(1, 2)
kv = self.kv(v).reshape(B_, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SAMBLOCK(nn.Module):
def __init__(self,
dim,
num_heads,
v_dim,
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.window_size = window_size
self.dim = dim
self.num_heads = num_heads
self.v_dim = v_dim
self.window_size = window_size
self.mlp_ratio = mlp_ratio
act_layer = nn.GELU
norm_layer = nn.LayerNorm
self.norm1 = norm_layer(dim)
self.normv = norm_layer(dim)
self.attn = WindowAttention(
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, v_dim=v_dim,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(v_dim)
mlp_hidden_dim = int(v_dim * mlp_ratio)
self.mlp = Mlp(in_features=v_dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, v, H, W):
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
shortcut_v = v
v = self.normv(v)
v = v.view(B, H, W, C)
# pad feature maps to multiples of window size
pad_l = pad_t = 0
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
v = F.pad(v, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
# partition windows
x_windows = window_partition(x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
v_windows = window_partition(v, self.window_size) # nW*B, window_size, window_size, C
v_windows = v_windows.view(-1, self.window_size * self.window_size,
v_windows.shape[-1]) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, v_windows, mask=None) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.v_dim)
x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, self.v_dim)
# FFN
x = self.drop_path(x) + shortcut
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x, H, W
class SAM(nn.Module):
def __init__(self,
input_dim=96,
embed_dim=96,
v_dim=64,
window_size=7,
num_heads=4,
patch_size=4,
in_chans=3,
norm_layer=nn.LayerNorm,
patch_norm=True):
super().__init__()
self.embed_dim = embed_dim
if input_dim != embed_dim:
self.proj_e = nn.Conv2d(input_dim, embed_dim, 3, padding=1)
else:
self.proj_e = None
if v_dim != embed_dim:
self.proj_q = nn.Conv2d(v_dim, embed_dim, 3, padding=1)
elif embed_dim % v_dim == 0:
self.proj_q = None
self.proj = nn.Conv2d(embed_dim, embed_dim, 3, padding=1)
v_dim = embed_dim
self.sam_block = SAMBLOCK(
dim=embed_dim,
num_heads=num_heads,
v_dim=v_dim,
window_size=window_size,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer=norm_layer)
layer = norm_layer(embed_dim)
layer_name = 'norm_sam'
self.add_module(layer_name, layer)
def forward(self, e, q):
if self.proj_q is not None:
q = self.proj_q(q)
if self.proj_e is not None:
e = self.proj_e(e)
e_proj = e
q_proj = q
Wh, Ww = q.size(2), q.size(3)
q = q.flatten(2).transpose(1, 2)
e = e.flatten(2).transpose(1, 2)
q_out, H, W = self.sam_block(q, e, Wh, Ww)
norm_layer = getattr(self, f'norm_sam')
q_out = norm_layer(q_out)
q_out = q_out.view(-1, H, W, self.embed_dim).permute(0, 3, 1, 2).contiguous()
return q_out + e_proj + q_proj
if __name__ == '__main__':
x = torch.randn(4, 96, 128, 128)
y = torch.randn(4, 96, 128, 128)
model = SAM(v_dim=96)
output = model(x, y)
print(output.shape)