【算法】漫谈递归

本文深入探讨了递归的概念,从归纳法的角度解释递归的本质,强调递归不仅仅是函数调用自身,而是通过分解问题规模找到相同解法的过程。文章详细阐述了递归的两个关键条件,并介绍了尾递归及其优化,说明了如何将普通递归改写为尾递归以避免栈溢出。此外,还提到了ES6中的尾调用优化只在严格模式下有效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

(factorial (6))
(6 * factorial (5))
(6 * (5 *  factorial (4)))
(6 * (5 * (4 * factorial (3))))
(6 * (5 * (4 * (3 * factorial (2)))))
(6 * (5 * (4 * (3 * (2 * factorial (1))))))
(6 * (5 * (4 * (3 * (2 * 1)))))
(6 * (5 * (4 * (3 * 2))))
(6 * (5 * (4 * 6)))
(6 * (5 * 24))
(6 * 120)
720

在这里插入图片描述
在这里插入图片描述

递归

用归纳法来理解递归

数学都不差的我们,第一反应就是递归在数学上的模型是什么。毕竟我们对于问题进行数学建模比起代码建模拿手多了。 (当然如果对于问题很清楚的人也可以直接简历递归模型了,运用数模做中介的是针对对于那些问题还不是很清楚的人)

自己观察递归,我们会发现,递归的数学模型其实就是归纳法,这个在高中的数列里面是最常用的了。回忆一下归纳法。

归纳法适用于想解决一个问题转化为解决他的子问题,而他的子问题又变成子问题的子问题,而且我们发现这些问题其实都是一个模型,也就是说存在相同的逻辑归纳处理项。当然有一个是例外的,也就是递归结束的哪一个处理方法不适用于我们的归纳处理项,当然也不能适用,否则我们就无穷递归了。这里又引出了一个归纳终结点以及直接求解的表达式。如果运用列表来形容归纳法就是:

步进表达式:问题蜕变成子问题的表达式
结束条件:什么时候可以不再是用步进表达式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值