The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
Input
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12 13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x r-> d-> r->
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
is described by this list:
Output
1 2 3 x 4 6 7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.
Sample Input
2 3 4 1 5 x 7 6 8Sample Output
ullddrurdllurdruldr
#include<stdio.h>
#include<iostream>
#include<string>
#include<queue>
#include<string.h>
#include<algorithm>
#define N 370000
const int n=9;
using namespace std;
int path[N],pre[N],vis[N],p[N];
int nx[4][2]= {-1,0,0,1,1,0,0,-1};
char st[5]= {'u','r','d','l'};
int ans[10]= {1,1,2,6,24,120,720,5040,40320};
struct node
{
int num[10];
int wz;
int kt;
int step;
};
int KT(int s[])
{
int sum=0;
for(int i=0; i<n; i++)
{
int res=0;
for(int j=i+1; j<n; j++)
if(s[i] > s[j]) res++;
sum+=res*ans[n-1-i];
}
return sum;
}
void bfs(node a)
{
node now,tmp;
now=a;
now.kt=KT(now.num);
vis[now.kt]=1;
now.step=0;
queue<node>Q;
Q.push(now);
while(!Q.empty())
{
now=Q.front();
Q.pop();
if(now.kt==0)
{
int g=now.kt;
for(int i=now.step; i>=1; i--)
{
p[i]=path[g]; //路径
g=pre[g]; //前面的kt
}
for(int i=1; i<=now.step; i++)
printf("%c",st[p[i]]);
printf("\n");
return ;
}
int tx,ty,x=now.wz/3,y=now.wz%3;
for(int i=0; i<4; i++)
{
tx=x+nx[i][0];
ty=y+nx[i][1];
if(tx<0 || ty<0 ||tx>=3 || ty>=3) continue;
for(int j=0; j<n; j++)
tmp.num[j]=now.num[j];
tmp.wz=tx*3+ty;
swap(tmp.num[tmp.wz],tmp.num[now.wz]);
tmp.kt=KT(tmp.num);
if(vis[tmp.kt]) continue;
vis[tmp.kt]=1;
path[tmp.kt]=i;
pre[tmp.kt]=now.kt;
tmp.step=now.step+1;
Q.push(tmp);
}
}
printf("unsolvable\n");
}
int main()
{
node now;
char s;
memset(vis,0,sizeof(vis));
for(int i=0; i<n; i++)
{
cin>>s;
if(s=='x')
{
now.num[i]=9;
now.wz=i;
}
else
now.num[i]=s-'0';
}
bfs(now);
return 0;
}
用IDA* 时间更短 内存更小
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
using namespace std;
int mp[3][3],limit,flag;
int nx[4][2]= {0,-1,-1,0,0,1,1,0};
int ans[101];
char str[5]= {"lurd"};
int getall(int s[3][3])
{
int sum=0;
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
{
if(s[i][j]==9) continue;
if(s[i][j]-1 != i*3+j)
sum+=fabs((s[i][j]-1)/3-i)+fabs((s[i][j]-1)%3-j);
}
return sum;
}
void dfs(int x,int y,int s,int pev)
{
if(flag || s+getall(mp)>limit) return ;
if(getall(mp)==0)
{
flag=1;
for(int i=0; i<s; i++)
printf("%c",str[ans[i]]);
printf("\n");
return ;
}
for(int i=0; i<4; i++)
{
int tx=x+nx[i][0];
int ty=y+nx[i][1];
if(tx<0 || ty<0 || tx>=3 || ty>=3 || fabs(pev-i)==2) continue;
swap(mp[tx][ty],mp[x][y]);
ans[s]=i;
dfs(tx,ty,s+1,i);
swap(mp[tx][ty],mp[x][y]);
}
}
int main()
{
char s;
int x,y;
for(int i=0; i<3; i++)
{
for(int j=0; j<3; j++)
{
cin>>s;
if(s=='x')
{
mp[i][j]=9;
x=i;
y=j;
}
else mp[i][j]=s-'0';
}
}
flag=0;
for(limit=getall(mp); limit<100; limit++)
{
dfs(x,y,0,-100);
}
if(!flag) printf("unsolvable\n");
return 0;
}
加了逆序数
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
using namespace std;
int mp[3][3],limit,flag;
int nx[4][2]= {0,-1,-1,0,0,1,1,0};
int ans[101];
char str[5]= {"lurd"};
int ok(int s[3][3])
{
int sum=0,k=0,a[10];
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
a[k++]=s[i][j];
for(int i=0; i<9; i++)
{
for(int j=0; j<i; j++)
if(a[i] < a[j] && a[j]!=9 && a[i]!=9) //只考虑1-8的位置关系
sum++;
}
if(sum&1) return 0;
return 1;
}
int getall(int s[3][3])
{
int sum=0;
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
{
if(s[i][j]==9) continue;
if(s[i][j]-1 != i*3+j)
sum+=fabs((s[i][j]-1)/3-i)+fabs((s[i][j]-1)%3-j);
}
return sum;
}
void dfs(int x,int y,int s,int pev)
{
if(flag || s+getall(mp)>limit) return ;
if(getall(mp)==0)
{
flag=1;
for(int i=0; i<s; i++)
printf("%c",str[ans[i]]);
printf("\n");
return ;
}
for(int i=0; i<4; i++)
{
int tx=x+nx[i][0];
int ty=y+nx[i][1];
if(tx<0 || ty<0 || tx>=3 || ty>=3 || fabs(pev-i)==2) continue;
swap(mp[tx][ty],mp[x][y]);
if(!ok(mp)) continue;
ans[s]=i;
dfs(tx,ty,s+1,i);
swap(mp[tx][ty],mp[x][y]);
}
}
int main()
{
char s;
int x,y;
for(int i=0; i<3; i++)
{
for(int j=0; j<3; j++)
{
cin>>s;
if(s=='x')
{
mp[i][j]=9;
x=i;
y=j;
}
else mp[i][j]=s-'0';
}
}
if(!ok(mp))
{
printf("unsolvable\n");
return 0;
}
flag=0;
for(limit=getall(mp); limit<100 && !flag; limit++)
{
dfs(x,y,0,-100);
}
if(!flag) printf("unsolvable\n");
return 0;
}
A*
#include<iostream>
#include<string.h>
#include<queue>
#include<math.h>
#define N 370000
using namespace std;
int path[N],pre[N],p[N],vis[N];
int ans[10]= {1,1,2,6,24,120,720,5040,40320};
int nx[4][2]= {0,-1,-1,0,0,1,1,0};
char str[5]= {"lurd"};
struct node
{
int wz,kt;
int num[10];
int step;
int has;
bool operator < (const node &a) const
{
if(has==a.has) return step > a.step;
return has >a.has;
}
};
int ok(int s[])
{
int sum=0;
for(int i=0; i<9; i++)
{
for(int j=0; j<i; j++)
if(s[i]!=9 && s[j]!=9 && s[i]<s[j]) sum++;
}
if(sum&1) return 0;
return 1;
}
int hash_(int s[])
{
int sum=0,k=0;
int a[3][3];
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
a[i][j]=s[k++];
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
{
if(a[i][j]==9) continue;
if(a[i][j]!=i*3+j+1)
sum+=fabs((a[i][j]-1)/3-i)+fabs((a[i][j]-1)%3-j);
}
return sum;
}
int KT(int s[])
{
int res=0;
for(int i=0; i<9; i++)
{
int v=0;
for(int j=i+1; j<9; j++)
if(s[i] > s[j])
v++;
res+=v*(ans[8-i]);
}
return res;
}
void bfs(node a)
{
node now,tmp;
now=a;
priority_queue<node>Q;
Q.push(now);
while(!Q.empty())
{
now=Q.top();
Q.pop();
if(now.kt==0)
{
int g=now.kt;
for(int i=now.step; i>=1; i--)
{
p[i]=path[g];
g=pre[g];
}
for(int i=1; i<=now.step; i++)
cout<<str[p[i]];
cout<<endl;
return ;
}
for(int i=0; i<4; i++)
{
int tx=now.wz/3+nx[i][0];
int ty=now.wz%3+nx[i][1];
if(tx<0 || ty<0 || tx>=3 || ty>=3) continue;
tmp.wz=tx*3+ty;
for(int j=0; j<9; j++)
tmp.num[j]=now.num[j];
swap(tmp.num[tmp.wz],tmp.num[now.wz]);
tmp.kt=KT(tmp.num);
if(vis[tmp.kt] || !ok(tmp.num)) continue;
vis[tmp.kt]=1;
tmp.step=now.step+1;
path[tmp.kt]=i;
pre[tmp.kt]=now.kt;
tmp.has=hash_(tmp.num);
Q.push(tmp);
}
}
cout<<"unsolvable"<<endl;
return ;
}
int main()
{
memset(vis,0,sizeof(vis));
node now;
char s;
for(int i=0; i<9; i++)
{
cin>>s;
if(s=='x')
{
now.num[i]=9;
now.wz=i;
}
else now.num[i]=s-'0';
}
if(!ok(now.num))
{
cout<<"unsolvable"<<endl;
return 0;
}
now.step=0;
now.kt=KT(now.num);
vis[now.kt]=1;
now.has=hash_(now.num);
bfs(now);
return 0;
}