poj 2955

本文介绍了一种通过动态规划算法来解决寻找字符串中最长的有效括号子序列的问题,并提供了详细的实现代码。该算法通过判断每两个相邻字符是否能形成有效的括号对,进而更新状态数组以找出最长的有效括号子序列长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < imn, ai1ai2aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6

先判断每两个相邻的字符是否能配成括号,然后枚举各个区间的情况

如果s[i]和s[j]能配成括号 则dp[i][j]=dp[i+1][j-1]+2

更新区间[i][j]的最大值 dp[i][j]=max(dp[i][k]+dp[k+1][j],dp[i][j]);

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;

int main()
{
    char s[110];
    int n,dp[110][110];

    while(~scanf("%s",s))
    {
        if(strcmp(s,"end")==0) break;
        n=strlen(s);
        memset(dp,0,sizeof(dp));

        for(int j=1; j<n; j++)
        {
            for(int i=j-1; i>=0; i--)
            {
                if((s[i]=='(' && s[j]==')') || (s[i]=='[' && s[j]==']'))
                    dp[i][j]=dp[i+1][j-1]+2;
                for(int k=i; k<=j; k++)
                    dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]);
            }
        }
        printf("%d\n",dp[0][n-1]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值