思路:
性质1:能在结点u,v添加边的充要条件是u,v在第一个图和第二个图都不连通
性质2:可以添加的边数等于 n - 1 - max(m1, m2),并且添加边的顺序不会影响结果(即 边(u,v)满足性质1,就可以直接添加,不会影响结果),证明如下:
对于hard version:先让所有可以与结点1连边的结点连边,然后对于结点2 ~ n,可以分为三类结点:在第一个图与结点1不连通,在第二个图与结点1连通(表示为01)、10 、11,(不存在00,若存在00,那么这个结点就会与结点1连边,变成11)。11的结点不能再连边,对答案无贡献,可以忽略;01的结点u可以与10的结点v连边,注意添加边(u,v)后,原本和u在第一个图中同一个连通块的结点(原本整个连通块的结点都是01)都会变成11,同理v在第二个图中所在连通块也是变成11,故对于每个连通块只找最高级祖先来连边。