codeforces 735D

本文探讨了一个基于哥德巴赫猜想的简化版本问题,并提供了一种通过判断质数来解决该问题的方法。文章中给出了具体的算法实现代码,用于解决如何将一个整数分解成最少数量的质数之和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://codeforces.com/problemset/problem/735/D

原来有这样一个哥德巴赫猜想
      如果一个数是偶数,可以分解为2个质数之和; 

1.如果n本身为质数直接输出1

2.如果n为偶数 可以分解为 两个质数之和 输出2

3.如果n为奇数,可以分解为一个质数+一个偶数,输出3(有一个比较特殊情况的偶数2,本身为质数,所以奇数的时候需要进行判断n-2是否为质数,如果是:输出2)

根据这个思想:

代码如下:

#include <bits/stdc++.h>

using namespace std;

bool judge(int n){  // 判断是一个数是否为质数;
    long long i;
    for(i = 2; i*i <= n; ++i){
        if(n%i == 0) return false;
    }
    return true;
}

int main()
{
    int n;
    scanf("%d", &n);
    if(judge(n)) printf("1\n");
    else if(!(n&1)) printf("2\n");
    else {
        if(judge(n-2))
            printf("2\n");
        else
            printf("3\n");
    }
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值