多层感知机的从零开始实现( 从D2L 包中抽取函数)


多层感知机的从零开始实现

多层感知机(Multilayer Perceptron,简称MLP),是一种基于前馈神经网络(Feedforward Neural Network)的深度学习模型,由多个神经元层组成,其中每个神经元层与前一层全连接。

多层感知机可以用于解决分类、回归和聚类等各种机器学习问题。 多层感知机的每个神经元层由许多神经元组成,其中输入层接收输入特征,输出层给出最终的预测结果,中间的隐藏层用于提取特征和进行非线性变换。每个神经元接收前一层的输出,进行加权和和激活函数运算,得到当前层的输出

让我们尝试自己实现一个多层感知机。
为了与之前softmax回归( :numref:sec_softmax_scratch
获得的结果进行比较,
我们将继续使用Fashion-MNIST图像分类数据集
( :numref:sec_fashion_mnist)。

import torch
from torch import nn
# from d2l import torch as d2l

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shiter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值