单机版 xgboost 回归算法 demo: 通过 x 拟合 y


简介

XGBoost(eXtreme Gradient Boosting)是Gradient Boosting算法的一个优化的版本。

在这里插入图片描述


参数简介

  • https://xgboost.readthedocs.io/en/latest/parameter.html

XGBoost的作者把所有的参数分成了三类:

  • 通用参数:宏观函数控制。
  • Booster参数:控制每一步的booster(tree/regression)。
  • 学习目标参数:控制训练目标的表现。

这么多参数,怎么弄? 自然的想到一个能不能自动化调参,或者网格搜寻一下也可以(待续 )


回归demo

以下为jupyter notebook的 demo

from sklearn.model_selection 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shiter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值