《大数据处理实践探索》---- 基于Flask lambda 服务在aws 上 进行模型部署

In order to work around the package size limit of aws lambda. There’re three options

• 1. If compressed deployment package size > 50MB and uncompressed package size < 250MB. You can upload your package through s3. Here’s a tutorial:

https://dashbird.io/blog/exploring-lambda-limitations/

• 2. If compressed deployment package size > 50MB and uncompressed package size > 250MB, you need to deploy your stuff on AWS Sagemaker and create an endpoint to expose the model prediction function as a REST service.

• 3. Create an EC2 instance and serve the model using a flask server. The lambda function basically receive events from Kinesis and send it out directly to the flask server, Then get response from the flask server.

For option-1,

Th

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shiter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值