第十周项目一 二叉树算法库

二叉树链式存储结构
本文介绍了一种二叉树的链式存储结构及其基本运算实现,包括创建、查找节点、获取左右孩子节点、计算树深度等操作,并通过具体示例展示了整个过程。
/*   
* Copyright (c)2016,烟台大学计算机与控制工程学院   
* All rights reserved.   
* 文件名称:项目1.cpp   
* 作    者:王晓慧   
* 完成日期:2016年11月3日   
* 版 本 号:v1.0    
*问题描述:定义二叉树的链式存储结构,实现其基本运算,并完成测试。 
*输入描述:无   
*程序输出:测试数据   

*/ 

#define MaxSize 100  
typedef char ElemType;  
typedef struct node  
{  
    ElemType data;              //数据元素  
    struct node *lchild;        //指向左孩子  
    struct node *rchild;        //指向右孩子  
} BTNode;  
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链  
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针  
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针  
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针  
int BTNodeDepth(BTNode *b); //求二叉树b的深度  
void DispBTNode(BTNode *b); //以括号表示法输出二叉树  
void DestroyBTNode(BTNode *&b);  //销毁二叉树  
#include <stdio.h>  
#include <malloc.h>  
void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链  
{  
    BTNode *St[MaxSize],*p=NULL;  
    int top=-1,k,j=0;  
    char ch;  
    b=NULL;             //建立的二叉树初始时为空  
    ch=str[j];  
    while (ch!='\0')    //str未扫描完时循环  
    {  
        switch(ch)  
        {  
        case '(':  
            top++;  
            St[top]=p;  
            k=1;  
            break;      //为左节点  
        case ')':  
            top--;  
            break;  
        case ',':  
            k=2;  
            break;                          //为右节点  
        default:  
            p=(BTNode *)malloc(sizeof(BTNode));  
            p->data=ch;  
            p->lchild=p->rchild=NULL;  
            if (b==NULL)                    //p指向二叉树的根节点  
                b=p;  
            else                            //已建立二叉树根节点  
            {  
                switch(k)  
                {  
                case 1:  
                    St[top]->lchild=p;  
                    break;  
                case 2:  
                    St[top]->rchild=p;  
                    break;  
                }  
            }  
        }  
        j++;  
        ch=str[j];  
    }  
}  
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针  
{  
    BTNode *p;  
    if (b==NULL)  
        return NULL;  
    else if (b->data==x)  
        return b;  
    else  
    {  
        p=FindNode(b->lchild,x);  
        if (p!=NULL)  
            return p;  
        else  
            return FindNode(b->rchild,x);  
    }  
}  
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针  
{  
    return p->lchild;  
}  
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针  
{  
    return p->rchild;  
}  
int BTNodeDepth(BTNode *b)  //求二叉树b的深度  
{  
    int lchilddep,rchilddep;  
    if (b==NULL)  
        return(0);                          //空树的高度为0  
    else  
    {  
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep  
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep  
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);  
    }  
}  
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树  
{  
    if (b!=NULL)  
    {  
        printf("%c",b->data);  
        if (b->lchild!=NULL || b->rchild!=NULL)  
        {  
            printf("(");  
            DispBTNode(b->lchild);  
            if (b->rchild!=NULL) printf(",");  
            DispBTNode(b->rchild);  
            printf(")");  
        }  
    }  
}  
void DestroyBTNode(BTNode *&b)   //销毁二叉树  
{  
    if (b!=NULL)  
    {  
        DestroyBTNode(b->lchild);  
        DestroyBTNode(b->rchild);  
        free(b);  
    }  
} 
int main()  
{  
    BTNode *b,*p,*lp,*rp;;  
    printf("  (1)创建二叉树:");  
    CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");  
    printf("\n");  
    printf("  (2)输出二叉树:");  
    DispBTNode(b);  
    printf("\n");  
    printf("  (3)查找H节点:");  
    p=FindNode(b,'H');  
    if (p!=NULL)  
    {  
        lp=LchildNode(p);  
        if (lp!=NULL)  
            printf("左孩子为%c ",lp->data);  
        else  
            printf("无左孩子 ");  
        rp=RchildNode(p);  
        if (rp!=NULL)  
            printf("右孩子为%c",rp->data);  
        else  
            printf("无右孩子 ");  
    }  
    else  
        printf(" 未找到!");  
    printf("\n");  
    printf("  (4)二叉树b的深度:%d\n",BTNodeDepth(b));  
    printf("  (5)释放二叉树b\n");  
    DestroyBTNode(b);  
    return 0;  
}  



知识点总结:二叉树的建立输入与输出





本研究基于扩展卡尔曼滤波(EKF)方法,构建了套用于航天器姿态与轨道协同控制的仿真系统。该系统采用参数化编程设计,具备清晰的逻辑结构和详细的代码注释,便于用户根据具体需求调整参数。所提供的案例数据可直接在MATLAB环境中运行,无需额外预处理步骤,适用于计算机科学、电子信息工程及数学等相关专业学生的课程设计、综合实践或毕业课题。 在航天工程实践中,精确的姿态与轨道控制是保障深空探测、卫星组网及空间设施建设等任务成功实施的基础。扩展卡尔曼滤波作为种适用于非线性动态系统的状态估计算法,能够有效处理系统模型中的不确定性与测量噪声,因此在航天器耦合控制领域具有重要应用价值。本研究实现的系统通过模块化设计,支持用户针对不同航天器平台或任务场景进行灵活配置,例如卫星轨道维持、飞行器交会对接或地外天体定点着陆等控制问题。 为提升系统的易用性与教学适用性,代码中关键算法步骤均附有说明性注释,有助于用户理解滤波器的初始化、状态预测、观测更新等核心流程。同时,系统兼容多个MATLAB版本(包括2014a、2019b及2024b),可适应不同的软件环境。通过实际操作该仿真系统,学生不仅能够深化对航天动力学与控制理论的认识,还可培养工程编程能力与实际问题分析技能,为后续从事相关技术研究或工程开发奠定基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
霍夫曼编码是种广泛使用的无损数据压缩算法,其核心思想是通过构建棵带权路径最短的二叉树(霍夫曼树),为高频出现的字符分配较短的编码,为低频出现的字符分配较长的编码,从而实现高效压缩。在 Python 中,虽然标准库中没有直接实现霍夫曼编码的模块,但可以借助些第三方库或自行实现相关算法。 ### 1. 使用 `bitarray` 库进行位操作 霍夫曼编码涉及大量的位操作,例如将字符编码为二进制串并进行打包和解包。Python 中的 `bitarray` 库非常适合这任务,它提供了高效的位数组操作,便于构建和处理二进制数据流。 安装方式: ```bash pip install bitarray ``` 示例代码片段: ```python from bitarray import bitarray # 示例字符编码 code_table = { 'a': bitarray('0'), 'b': bitarray('10'), 'c': bitarray('11') } # 编码过程 text = "abac" encoded = bitarray() for char in text: encoded.extend(code_table[char]) # 写入文件 with open('compressed.bin', 'wb') as f: encoded.tofile(f) ``` ### 2. 自行实现霍夫曼编码类 虽然没有现成的库直接提供霍夫曼编码功能,但可以根据算法原理自行实现。通常包括以下组件: - **节点类**:用于构建霍夫曼树 - **优先队列**:使用 `heapq` 模块实现最小堆 - **编码与解码函数** 示例代码: ```python import heapq from collections import Counter class HuffmanNode: def __init__(self, char, freq): self.char = char self.freq = freq self.left = None self.right = None def __lt__(self, other): return self.freq < other.freq def build_huffman_tree(freq_map): heap = [HuffmanNode(char, freq) for char, freq in freq_map.items()] heapq.heapify(heap) while len(heap) > 1: left = heapq.heappop(heap) right = heapq.heappop(heap) merged = HuffmanNode(None, left.freq + right.freq) merged.left = left merged.right = right heapq.heappush(heap, merged) return heap[0] ``` ### 3. 霍夫曼编码的应用场景 基于纯霍夫曼算法的压缩程序能够对未经压缩的文件格式起到压缩作用,特别是对字节种类不多、重复次数多的文件格式如 BMP 位图、AVI 视频等能够起到非常好的压缩效果,但对于本身已经经过压缩的文件格式如 DOCX、MP4 等基本无效 [^2]。 此外,在实际运行测试过程中发现,对于权值相同的字符,每次迭代排序时编码要么是 0、要么是 1,这往往造成成对的编译码错误,问题主要出在以下代码中: ```python sorts = sorted(l, key=lambda x: x.value, reverse=False) ``` 因此,在实现过程中应特别注意节点排序策略,确保编码的致性和正确性 [^3]。 ### 4. 面向对象设计与扩展性 在实现霍夫曼编码的过程中,可以采用面向对象设计来提高代码的可扩展性与灵活性。例如,使用策略模式处理不同的编码策略,使用工厂模式创建节点对象,使用递归模式构建霍夫曼树 [^1]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值