模型预测结果校准——Platt Scaling

模型预测结果校准——Platt Scaling

方法简介:

Platt scaling is a method for transforming SVM outputs from  to posterior probabilities (Platt, 1999). [1]

Platt (1999) proposed transforming SVM predictions to posterior probabilities by passing them through a sigmoid.

Platt scaling是一种参数化方法(The parametric approach), 使用LR模型(sigmoid函数)对模型的输出值进行拟合,将模型的原始输出值映射为概率值,区间(0,1)。假设f(x)为模型的输出值,

上式中的参数A,B通过在训练集(fi,yi)上进行最大似然估计获取。

适用情况:

Platt Scaling is most effective when the distortion in the predicted probabilities is sigmoid-shaped.

Platt scaling适用于模型输出的概率是S型的,this method may lead to poor calibration when the outputs do not fit the sigmoid function;

适用于样本量少的情形;

适用于SVM,boosting等算法的结果的校正。

 

参考文献:

[1] Alexandru Niculescu-Mizil, et al. Predicting Good Probabilities With Supervised Learning. ICML2005.

[2]vividfree的博客<使用 Isotonic Regression 校准分类器>

 http://vividfree.github.io/机器学习/2015/12/21/classifier-calibration-with-isotonic-regression

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值