洛谷 P1216 数字三角形 题解 || 动态规划

文章介绍了如何使用动态规划解决数字三角形问题,通过状态转移方程计算从顶到底部路径的和,避免了回溯法的低效。关键概念包括状态定义、状态转移方程和最优子结构。

一、 [USACO1.5] [IOI1994]数字三角形 Number Triangles

洛谷:数字三角形

题目描述

观察下面的数字金字塔。

写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以走到左下方的点也可以到达右下方的点。

在上面的样例中,从 7 → 3 → 8 → 7 → 5 7 \to 3 \to 8 \to 7 \to 5 73875 的路径产生了最大权值。

输入格式

第一个行一个正整数 r r r ,表示行的数目。

后面每行为这个数字金字塔特定行包含的整数。

输出格式

单独的一行,包含那个可能得到的最大的和。

样例 #1

样例输入 #1

5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

样例输出 #1

30

提示

【数据范围】
对于 100 % 100\% 100% 的数据, 1 ≤ r ≤ 1000 1\le r \le 1000 1r1000,所有输入在 [ 0 , 100 ] [0,100] [0,100] 范围内。

题目翻译来自NOCOW。

USACO Training Section 1.5

IOI1994 Day1T1

二、思考

如下图:给出两幅图,你会想到什么解决办法呢?

在这里插入图片描述
格子编号

错误思路

找到每行的最大值,依次向下查找
如果是按照这样的思路,会发现其他路径还有比当前路径之和大,代码运行失败!
在这里插入图片描述

思路分析

题意:从第一行的数开始,每次可以往左下或右下走一格,直到走到最下行,把沿途经过的数全部加起来。如何走才能使得这个和尽量大?
[分析]

如果熟悉回溯法,你可能会立刻发现这是一个动态的决策问题:每次有两种选择一一左下或右下。如果用回溯法求出所有可能的路线,就可以从中选出最优路线。但和往常一样,回溯法的效率太低:一个n层数字三角形的完整路线有 2”条,当n 很大时回溯法的速度将让人无法忍受。

为了得到高效的算法,需要用抽象的方法思考问题:把当前的位置(,看成一个状态(还记得吗?),然后定义状态(i的指标函 d(i,为从格子i,出发时能得的最大和(包括格子(G)本身的值)。在这个状态定义下,原问题的解是 d(1,1)。

下面看看不同状态之间是如何转移的。从格子(i,j)出发有两种决策。如果往左走,则走到(i+1,j)后需要求“从(i+1,j),出发后能得到的最大和”这一问题,即 d(i+1,j)。类似地,往右走之后需要求解 d(i11)。由于可以在这两个决策中自由选择,所以应选择 d(i+1,j)和d(i+1,j+1)中较大的一个。
换句话说,得到了所谓的状态转移方程:

d(i,j)=a(i,j)+max{d(i+l,j),d(i+l,j+I)}

如果往左走,那么最好情况等于(i,)格子里的值a(i,与“从(1出发的最大总和”之和,此时需注意这里的“最大”二字。如果连“从(+1.出发走到底部”这部分的和都不是最大的,加上 a(i,之后肯定也不是最大的。这个性质称为最优子结构 (optimalsubstructure),也可以描述成“全局最优解包含局部最优解”。不管怎样,状态和状态转移方程一起完整地描述了具体的算法。

回溯法

在这里插入图片描述
如图,构造初始的数字三角形

在这里插入图片描述

动态规划演示—从底端开始

在这里插入图片描述
在这里插入图片描述

最优解数字三角形构造完成,最优解为:30

此处回溯找出路径
从第一行开始,减去她它下一行左边或右边最优解的较大值,并从较大值开始往下求解

在这里插入图片描述

三、Code

C语言

//数字三角形--模板 
#include <stdio.h>
int max(int a,int b) {
   
   
	return a>b?a:b;
}
<think>好的,我现在需要帮用户解决P1656炸铁路的问题。用户想要题解、代码、解析和思路。首先,我应该回顾一下题目内容。根据引用[2],题目可能涉及铁路被炸的情况,用户提供的示例代码中有结构体存储铁路的起点、终点和状态,可能是在处理图的连通性问题。 用户提供的引用[2]中有一段代码,看起来像是在处理输入的铁路数据,每条铁路初始状态为未被炸(w=1)。这可能意味着问题需要找出关键边,也就是炸掉后会影响图的连通性的边。这类问题通常可以通过Tarjan算法求桥来解决,因为桥是图中的边,移除后会导致图不再连通。 接下来,我需要确认P1656的具体要求。根据常见的算法题,炸铁路很可能就是寻找无向图中的所有桥。桥的定义是,如果删除这条边,图会被分成两个或多个连通块。Tarjan算法可以在O(V+E)的时间内找到所有桥,这应该是解题的关键。 然后,我需要考虑如何构建图结构。通常,使用邻接表来存储图,每个节点有一个列表记录其连接的边。在实现Tarjan算法时,需要记录每个节点的发现时间和low值,用于判断是否为桥。 接下来,代码实现部分需要包括以下步骤: 1. 读取输入,构建邻接表。 2. 使用Tarjan算法遍历所有节点,找出所有桥。 3. 将找到的桥按题目要求的顺序输出,通常是按端点升序排列,如果端点相同则按另一端升序。 在引用[3]中提到拓扑排序用于车站分级问题,但这里的问题不同,可能需要不同的方法。因此,引用[3]和[1]可能不适用,但引用[2]中的代码结构可能帮助理解输入处理。 用户可能需要详细的步骤解释,比如如何应用Tarjan算法,如何处理输入输出,以及如何排序结果。此外,需要确保代码正确,符合题目的要求,比如边的输出顺序。 最后,验证思路是否正确。例如,Tarjan算法确实用于找桥,而题目要求找出所有这样的边,因此这个方法是合适的。然后,编写代码时需要注意无向图的处理,避免重复访问同一条边,通常通过记录父节点来实现。 总结思路:使用Tarjan算法寻找无向图中的所有桥,并按规则排序输出。</think>### P1656 炸铁路 题解 #### 题目分析 题目要求找到所有「关键铁路」,即删除该铁路后会导致图的连通性被破坏的边。这类问题对应图论中的**桥(割边)**问题,可以通过**Tarjan算法**高效解决[^5]。 #### 算法思路 1. **桥的定义**:无向图中若删除边 $(u,v)$ 后图不再连通,则该边为桥。 2. **Tarjan算法**:通过DFS遍历图,记录每个顶点的访问顺序(`dfn`)和能回溯到的最早祖先(`low`)。若对于边 $(u,v)$,满足 `low[v] > dfn[u]`,则说明 $(u,v)$ 是桥[^5]。 #### 代码实现 ```cpp #include <iostream> #include <vector> #include <algorithm> #include <cstring> using namespace std; const int MAXN = 155; vector<int> graph[MAXN]; vector<pair<int, int>> bridges; int dfn[MAXN], low[MAXN], parent[MAXN]; int timer = 0; void tarjan(int u) { dfn[u] = low[u] = ++timer; for (int v : graph[u]) { if (!dfn[v]) { parent[v] = u; tarjan(v); low[u] = min(low[u], low[v]); if (low[v] > dfn[u]) { // 找到桥 bridges.push_back({min(u, v), max(u, v)}); } } else if (v != parent[u]) { low[u] = min(low[u], dfn[v]); } } } int main() { int n, m; cin >> n >> m; for (int i = 0; i < m; ++i) { int u, v; cin >> u >> v; graph[u].push_back(v); graph[v].push_back(u); } for (int i = 1; i <= n; ++i) { if (!dfn[i]) { tarjan(i); } } sort(bridges.begin(), bridges.end()); for (auto &bridge : bridges) { cout << bridge.first << " " << bridge.second << endl; } return 0; } ``` #### 代码解析 1. **输入处理**:构建无向图的邻接表。 2. **Tarjan核心**:DFS遍历时维护`dfn`和`low`数组,判断桥的条件。 3. **结果排序**:将桥按字典序排序后输出,满足题目要求[^2]。 #### 复杂度分析 - 时间复杂度:$O(N + M)$,其中 $N$ 为顶点数,$M$ 为边数。 - 空间复杂度:$O(N + M)$,用于存储图结构和中间数据。
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值