混淆矩阵精度计算

本文介绍了如何使用Python的pymannkendall和numpy库处理示例数据,计算预测值(mod10a1f_predictions_sample)与实际值(true_values_sample)的混淆矩阵,并计算了精度、召回率、F1分数等统计指标。
import pymannkendall as mk
import numpy as np


# 定义示例数据
true_values_sample = np.array([1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
])
mod10a1f_predictions_sample = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
])

# 计算混淆矩阵的组成部分
tp = np.sum((true_values_sample == 1) & (mod10a1f_predictions_sample == 1))
tn = np.sum((true_values_sample == 0) & (mod10a1f_predictions_sample == 0))
fp = np.sum((true_values_sample == 0) & (mod10a1f_predictions_sample == 1))
fn = np.sum((true_values_sample == 1) & (mod10a1f_predictions_sample == 0))

# 计算统计指标
accuracy = (tp + tn) / (tp + tn + fp + fn)
precision = tp / (tp + fp) if tp + fp > 0 else 0
recall = tp / (tp + fn) if tp + fn > 0 else 0
f1_score = 2 *tp/(2*tp+fn+fp) if (precision + recall) > 0 else 0
OA = fp / (fp + tn) if fp + tn > 0 else 0
UA = fn / (fn + tp) if fn + tp > 0 else 0

print(tp, tn, fp, fn, accuracy, precision, recall, f1_score, OA,UA)


混淆矩阵精度计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值