You are given a very large integer n, represented as a string, and an integer digit x. The digits in n and the digit x are in the inclusive range [1, 9], and n may represent a negative number.
You want to maximize n’s numerical value by inserting x anywhere in the decimal representation of n. You cannot insert x to the left of the negative sign.
For example, if n = 73 and x = 6, it would be best to insert it between 7 and 3, making n = 763.
If n = -55 and x = 2, it would be best to insert it before the first 5, making n = -255.
Return a string representing the maximum value of n after the insertion.
Example 1:
Input: n = “99”, x = 9
Output: “999”
Explanation: The result is the same regardless of where you insert 9.
Example 2:
Input: n = “-13”, x = 2
Output: “-123”
Explanation: You can make n one of {-213, -123, -132}, and the largest of those three is -123.
Constraints:
- 1 <= n.length <= 105
- 1 <= x <= 9
- The digits in n are in the range [1, 9].
- n is a valid representation of an integer.
- In the case of a negative n, it will begin with ‘-’.
刨除正负号只看数字部分, 如果我们想让数字尽可能的大, 我们需要从高位到地位找到第一个< x 的数字, 将 x 插在该数字之前, 相反,如果我们想让数字尽可能的小, 我们需要从高位到低位找到第一个 > x 的数字, 将 x 插在该数字之前。简单来说就是插入的位数越高对整体数字大小的变化影响越大, 这个是量, 如果插入的 x 大于原来在此位置上的数字,那数字整体会变大, 反之则变小, 这个是质。
use std::collections::HashMap;
impl Solution {
pub fn max_value(mut n: String, x: i32) -> String {
let m: HashMap<char, i32> = vec![
('1', 1),
('2', 2),
('3', 3),
('4', 4),
('5', 5),
('6', 6),
('7', 7),
('8', 8),
('9', 9),
]
.into_iter()
.collect();
if n.starts_with('-') {
for (i, c) in n.chars().enumerate().skip(1) {
let v = *m.get(&c).unwrap();
if v > x {
n.insert_str(i, &x.to_string());
return n;
}
}
n.push_str(&x.to_string());
return n;
}
for (i, c) in n.chars().enumerate() {
let v = *m.get(&c).unwrap();
if v < x {
n.insert_str(i, &x.to_string());
return n;
}
}
n.push_str(&x.to_string());
return n;
}
}

本文介绍了一种算法,通过在给定的整数中插入一个特定数字来最大化其数值。算法考虑了正数和负数的情况,并详细解释了如何选择最佳插入位置以达到最优解。
336

被折叠的 条评论
为什么被折叠?



