图的Prim算法实现最小生成树
#include <iostream>
using namespace std;
#define MAX_V 100 //定义最大顶点个数
#define INF 1000 //表示正无穷
typedef struct VertexType
{
int number;//顶点标号
};//顶点类型
typedef struct MGraph//图的定义
{
int matrix[MAX_V][MAX_V];//邻接矩阵
int weight[MAX_V][MAX_V];//存放权值
int v;//顶点数
int e;//边数
VertexType vertax[MAX_V];//存放顶点信息
};//图的邻接矩阵类型
bool visited[MAX_V]; //全局变量记录访问结点
void CreateMGragh(MGraph *G)
{
int i,j,m,weight;
cout << "请输入顶点数和边数:" << endl;
cin >> G->v >> G->e ;
cout << "请输入顶点信息:" << endl;
for (i=0;i<G->v;i++)
{
scanf("%d",&G->vertax[i].number);//输入顶点信息,建立顶点表
}
for (i=0;i<G->v;i++)//初始化邻接矩阵
for (j=0;j<G->v;j++)
{
G->matrix[i][j]=0;
G->weight[i][j]=INF;//让所有权值不存在
}
for(i=0;i<G->v;i++)//是结点自身指向自身权值为0
for(j=0;j<G->v;j++)
if(i==j)
G->weight[i][j]=0;
cout << "输入每条边的首尾顶点序号及权值:" << endl;
for (m=0;m<G->e;m++)
{
cin >> i >> j >> weight; // >> weight;
G->matrix[i][j]=1;
G->matrix[j][i]=1;
G->weight[i][j]=weight;
G->weight[j][i]=weight;
}
}
void DisplayMGragh(MGraph *G)//输出邻接矩阵G
{
int i,j;
for(i=0;i<G->v;i++)
{
for(j=0;j<G->v;j++)
printf("%5d",G->matrix[i][j]);
printf("\n");
}
cout << endl;
}
void DisplayMGragh_W(MGraph *G)//输出权值矩阵G
{
int i,j;
for(i=0;i<G->v;i++)
{
for(j=0;j<G->v;j++)
printf("%5d",G->weight[i][j]);
printf("\n");
}
cout << endl;
}
void Prim(MGraph *G)
{
int LOW[G->v];
int CLOSE[G->v];
bool visited[G->v];
int i,j,k,t;
int min;
for(i = 0; i < G->v; i++) // 记录所有结点为未访问
{
visited[i] = false;
}
for(i = 0; i < G->v; i++) //以0结点为初始结点
{
LOW[i] = G->weight[0][i];
CLOSE[i] = 0;
}
visited[0] = true;
for(i = 1; i < G->v; i++)
{
min = INF;//LOW[i];
//k = i;
for(j = 0; j < G->v; j++)
if( visited[j] == false && LOW[j] != 0 )
{
if(LOW[j] < min)
{
min = LOW[j];
k = j;
}
}
cout << "(" << k << "," << CLOSE[k] << ")" << endl;
visited[k] = true;
for(j = 0; j < G->v; j++)
{
if(visited[j] != true)
{
if(G->weight[k][j] < LOW[j] || LOW[j] == 0)
{
LOW[j] = G->weight[k][j];
CLOSE[j] = k;
}
}
}
}
}
int main()
{
MGraph *M;
M = new MGraph;
CreateMGragh(M);
DisplayMGragh(M);
DisplayMGragh_W(M);
Prim(M);
return 0;
}