HDU 1711 Number Sequence

本文介绍了一种使用裸KMP算法解决数字序列匹配问题的方法,旨在寻找目标子序列在长序列中的起始位置。通过具体实例展示了算法实现过程,并提供了完整的代码示例。

裸KMP,求给定的数字序列中是否有给出的子串,即模式串。如果有的话,输出与模式串匹配上的首字母下标。

如果对KMP没有理解的话:附教程地址:KMP及KMP next数组讲解

Number Sequence

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 14806    Accepted Submission(s): 6496


Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
 

Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
 

Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
 

Sample Input
  
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
 

Sample Output
  
6 -1

题目链接:HDU1711 Number Sequence

AC代码:

#include<stdio.h>
#include<string.h>
#define N 1000005
#define M 10005
int a[N],b[M];
int next[M];
int n,m;
void setNext()
{
    int i,j;
    i=0;
    j=-1;
    next[i]=j;
    while(i<m)
    {
        if(j==-1||b[i]==b[j])
        {
            i++;
            j++;
            next[i]=j;
        }
        else
            j=next[j];
    }
    return ;
}

int KMP()
{
    int i,j;
    i=j=0;
    setNext();
    while(i<n)
    {
        if(j==-1||a[i]==b[j])
        {
            i++;
            j++;
            if(j==m)
                return i-m+1;
        }
        else
            j=next[j];
    }
    return -1;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        int i;
        for(i=0;i<n;i++)
            scanf("%d",&a[i]);
        for(i=0;i<m;i++)
            scanf("%d",&b[i]);
        int ans=KMP();
        printf("%d\n",ans);
    }
    return 0;
}


内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值