动态规划真是博大精深,虽然这题绝对是dp中的水题,但是在比赛的时候真的没有想到解法。
嗯,积累。
题目链接:http://codeforces.com/contest/467/problem/C
The new ITone 6 has been released recently and George got really keen to buy it. Unfortunately, he didn't have enough money, so George was going to work as a programmer. Now he faced the following problem at the work.
Given a sequence of n integers p1, p2, ..., pn. You are to choose k pairs of integers:
in such a way that the value of sum
is maximal possible. Help George to cope with the task.
The first line contains three integers n, m and k (1 ≤ (m × k) ≤ n ≤ 5000). The second line contains n integers p1, p2, ..., pn (0 ≤ pi ≤ 109).
Print an integer in a single line — the maximum possible value of sum.
5 2 1 1 2 3 4 5
9
7 1 3 2 10 7 18 5 33 0
61
思路:动态规划,令dp[i][j]表示前i个数选取j对(构成区间[r1,l1]则r1和l1为一对)能够得到的最大值,对于第i个数,有选取和不选取之分,状态转移方程:dp[i][j] = max{dp[i-1][j], dp[i-m][j-1]+sum[i]-sum[i-m]}, 其中sum[i]表示前i个数之和
代码:
#include <iostream>
#include <string>
#include <cstring>
#include <cmath>
#define MAX 5010
using namespace std;
__int64 dp[MAX][MAX];
__int64 max(__int64 a, __int64 b)
{
return a > b ? a : b;
}
int main()
{
int n, m, k;
cin >> n >> m >> k;
int p[MAX];
for (int i = 1; i <= n; i++)
cin >> p[i];
__int64 sum[MAX];
memset(sum, 0, sizeof(sum));
for (int i = 1; i <= n; i++)
sum[i] = sum[i-1]+p[i];
for (int i = m; i <= n; i++)
for (int j = 1; j*m<=i && j<=k; j++)
dp[i][j] = max(dp[i-1][j], dp[i-m][j-1]+sum[i]-sum[i-m]);
cout << dp[n][k] << endl;
//system("pause");
return 0;
}
本文介绍了一道Codeforces上的动态规划题目,旨在通过选取多个固定长度的区间来获得最大和。文章给出了清晰的解题思路及代码实现。
1339

被折叠的 条评论
为什么被折叠?



