Codeforces Round #267 (Div. 2) C. George and Job

本文介绍了一道Codeforces上的动态规划题目,旨在通过选取多个固定长度的区间来获得最大和。文章给出了清晰的解题思路及代码实现。

动态规划真是博大精深,虽然这题绝对是dp中的水题,但是在比赛的时候真的没有想到解法。

嗯,积累。


题目链接:http://codeforces.com/contest/467/problem/C

C. George and Job
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

The new ITone 6 has been released recently and George got really keen to buy it. Unfortunately, he didn't have enough money, so George was going to work as a programmer. Now he faced the following problem at the work.

Given a sequence of n integers p1, p2, ..., pn. You are to choose k pairs of integers:

[l1, r1], [l2, r2], ..., [lk, rk] (1 ≤ l1 ≤ r1 < l2 ≤ r2 < ... < lk ≤ rk ≤ nri - li + 1 = m), 

in such a way that the value of sum  is maximal possible. Help George to cope with the task.

Input

The first line contains three integers nm and k (1 ≤ (m × k) ≤ n ≤ 5000). The second line contains n integers p1, p2, ..., pn (0 ≤ pi ≤ 109).

Output

Print an integer in a single line — the maximum possible value of sum.

Sample test(s)
input
5 2 1
1 2 3 4 5
output
9
input
7 1 3
2 10 7 18 5 33 0
output
61
题意:有n个数字组成的一个序列,从该序列中选取k个区间,每个区间的长度都确定为m,其中k*m<=n,求这k个长度为m的区间的数字之和最大的值。

思路:动态规划,令dp[i][j]表示前i个数选取j对(构成区间[r1,l1]则r1和l1为一对)能够得到的最大值,对于第i个数,有选取和不选取之分,状态转移方程:dp[i][j] = max{dp[i-1][j], dp[i-m][j-1]+sum[i]-sum[i-m]}, 其中sum[i]表示前i个数之和

代码:

#include <iostream>
#include <string>
#include <cstring>
#include <cmath>
#define MAX 5010
using namespace std;

__int64 dp[MAX][MAX];

__int64 max(__int64 a, __int64 b)
{
	return a > b ? a : b;
}

int main()
{
	int n, m, k;
	cin >> n >> m >> k;
	int p[MAX];
	for (int i = 1; i <= n; i++)
		cin >> p[i];

	__int64 sum[MAX];
	memset(sum, 0, sizeof(sum));
	for (int i = 1; i <= n; i++)
		sum[i] = sum[i-1]+p[i];

	for (int i = m; i <= n; i++)
		for (int j = 1; j*m<=i && j<=k; j++)
			dp[i][j] = max(dp[i-1][j], dp[i-m][j-1]+sum[i]-sum[i-m]);
	cout << dp[n][k] << endl;
	//system("pause");
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值