论文阅读: Gated Context Aggregation Network for Image Dehazing and Deraining

今天发现自己构思了很久的一个想法,已经初步成型 的网络,在ArXiv上发现了已经成型的论文。害,现在心情很down

2018 WACV :GCANet

这篇文章主要结合平滑扩张卷积以及提出了一种门限融合子网络来完成图像的去雾和去雨,效果比较好。
在这里插入图片描述

本片文章主要是提出了一个端到端门控上下文聚合网络来直接恢复最终的无模糊图像。
在该网络中,我们采用最新的平滑扩张卷积技术来帮助去除广泛使用的扩张卷积引起的网格伪影,而额外的参数可以忽略,并利用门控子网络融合不同层次的特征。

主要关键词: 平滑扩张卷积 + 门控融合子网络

网络结构

在这里插入图片描述

整体网络可以看作一个简单的自动编码器。
从网络中我们可以看出,首先是三个卷积模块将输入的模糊图像编码到特征图中作为编码部分,并且最后一个卷积层进行了下采样。
然后通过七个平滑扩张的残差块,使用平滑扩张卷积替代了原始的正则卷积层。除了最后一个卷积层和平滑扩张卷积层中额外的每一个可分离和共享的卷积层,我们在每个卷积层之后放置了实例归一化层 IN 和ReLU层。
再之后通过一个门限融合子网络用于融合不同leve的特征,这里是一个简单的卷积模块。
再之后,通过一个反卷积层上采样到原始分辨率,接下来的两个卷积层将feature map转换回图像空间,得到残差图,最终得到一个处理之后的图像。

具体实现

1、平滑扩张卷积

对于传统的池化层和连续的上下采样可能

<think>好的,我现在要帮助用户了解或实现Medical Transformer模型中的Gated Axial-Attention机制,特别是用于医学图像分割的部分。首先,我需要回忆一下用户提供的引用内容。用户引用了两篇资料,其中引用[1]是关于Medical Transformer的论文和代码库,而引用[2]列出了其他相关的分割模型,但用户主要关注的是Medical Transformer。 用户的问题具体是关于Gated Axial-Attention的实现,所以需要深入理解这个机制的工作原理。根据论文,Gated Axial-Attention结合了轴向注意力和门控机制,轴向注意力指的是在图像的两个轴上(比如行和列)分别应用自注意力,这样可以减少计算量,同时捕捉长程依赖。门控机制则可能用于调整注意力权重,增强重要特征,抑制不相关的部分。 接下来,我需要考虑如何将这个机制转化为代码实现。可能需要参考论文中的结构图和公式。例如,轴向注意力可能分为行注意力和列注意力两个部分,然后通过门控机制进行融合。门控可能使用sigmoid函数来生成0到1之间的权重,然后将这两个注意力输出加权相加。 然后,我需要检查用户提供的代码链接,确保代码结构正确。用户给出的GitHub仓库是jeya-maria-jose/Medical-Transformer,所以应该参考其中的实现。例如,可能在axial_attention.py或者类似的文件中找到Gated Axial-Attention的代码。 此外,需要注意医学图像的特点,比如高分辨率和局部细节的重要性,这可能影响模型的设计。例如,轴向注意力可以处理二维结构,而门控机制帮助模型专注于关键区域,这对分割任务很重要。 用户可能需要具体的代码示例,所以需要提供PyTorch的实现片段,包括轴向注意力的分解、位置编码的添加,以及门控机制的应用。同时,要解释每个部分的作用,比如如何计算查询、键、值,如何应用位置编码,如何生成门控权重,并融合行和列的注意力结果。 还需要考虑实现中的细节,比如如何将二维图像转换为序列以适应Transformer结构,如何处理位置信息,以及如何将轴向注意力模块集成到UNet等分割网络中。可能还需要讨论数据预处理、训练策略和损失函数的选择,比如结合Dice损失和交叉熵损失。 最后,用户可能对如何应用该模型到自己的医学图像数据感兴趣,所以需要给出训练和推理的步骤,比如加载数据、构建模型、设置优化器和训练循环等。同时,提供相关的参考文献和代码库链接,方便用户进一步查阅。</think>以下是为您整理的Medical Transformer中Gated Axial-Attention实现详解: ### 一、Gated Axial-Attention机制解析 1. **轴向注意力分解**:将2D自注意力分解为行、列两个1D注意力操作 $$ \text{Attention}(Q,K,V) = \text{Softmax}(\frac{QK^T}{\sqrt{d_k}} + P)V $$ 其中位置编码$P$分解为$P_{row}$和$P_{col}$[^1] 2. **门控机制实现**: ```python class GatedAxialAttention(nn.Module): def __init__(self, dim, heads): super().__init__() self.row_att = AxialAttention(dim, heads, axis=0) # 行注意力 self.col_att = AxialAttention(dim, heads, axis=1) # 列注意力 self.gate = nn.Parameter(torch.ones(2)) # 可学习门控参数 def forward(self, x): row_out = self.row_att(x) col_out = self.col_att(x) # 门控融合 return torch.sigmoid(self.gate[0])*row_out + torch.sigmoid(self.gate[1])*col_out ``` ### 二、完整实现步骤 1. **特征序列化**:将2D医学图像转换为序列 ```python b, c, h, w = x.shape x_seq = x.view(b, c, h*w).permute(0, 2, 1) # [b, h*w, c] ``` 2. **位置编码注入**: ```python class AxialPositionalEmbedding(nn.Module): def __init__(self, dim, shape): super().__init__() self.row_emb = nn.Parameter(torch.randn(shape[0], dim//2)) self.col_emb = nn.Parameter(torch.randn(shape[1], dim//2)) def forward(self, x): return x + torch.cat([self.row_emb.unsqueeze(1), self.col_emb.unsqueeze(0)], dim=-1).flatten(0,1) ``` 3. **完整网络架构**(基于UNet框架): ```python class MedicalTransformer(nn.Module): def __init__(self, in_ch=3, classes=2): super().__init__() self.encoder = nn.Sequential( ConvBlock(in_ch, 64), GatedAxialAttention(64, heads=4), Downsample(64, 128), GatedAxialAttention(128, heads=8), Downsample(128, 256) ) self.decoder = ... # 对称上采样结构 ``` ### 三、训练实践要点 1. **数据预处理**: - 医学图像标准化(CT值截断+归一化) - 随机旋转/翻转增强 - 器官特定ROI裁剪 2. **损失函数组合**: ```python loss = 0.5*DiceLoss()(pred, mask) + 0.5*CrossEntropyLoss()(pred, mask) ``` 3. **训练策略**: ```python optimizer = AdamW(model.parameters(), lr=1e-4, weight_decay=1e-5) scheduler = CosineAnnealingLR(optimizer, T_max=100) ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值