BestCoder Round #87(1003-【思维】【LIS&&LCS】)

探讨了如何求解两个序列中最长的共增子序列问题,通过动态规划方法找到以每个元素结尾的最大子序列长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:点击打开链接

1003-LCIS

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 243    Accepted Submission(s): 98


Problem Description
Alex has two sequences a1,a2,...,an and b1,b2,...,bm . He wants find a longest common subsequence that consists of consecutive values in increasing order.
 

Input
There are multiple test cases. The first line of input contains an integer T , indicating the number of test cases. For each test case:

The first line contains two integers n and m (1n,m100000) -- the length of two sequences. The second line contains n integers: a1,a2,...,an (1ai106) . The third line contains n integers: b1,b2,...,bm (1bi106) .

There are at most 1000 test cases and the sum of n and m does not exceed 2×106 .
 

Output
For each test case, output the length of longest common subsequence that consists of consecutive values in increasing order.
 

Sample Input
  
3 3 3 1 2 3 3 2 1 10 5 1 23 2 32 4 3 4 5 6 1 1 2 3 4 5 1 1 2 1
 

Sample Output
  
1 5 0
 

Source

题解:

f(i)f(i)是以a_ia ​i结尾的最大值, g(i)g(i)是以b_ibi结尾的最大值. 答案就是\max_{a_i = b_j} {\min(f(i),g(j)}maxai=bj{min(f(i),g(j)}ffgg随便dp一下就出来了.

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAXN=1e5+10;
int n,m;
int a[MAXN],b[MAXN];
int dp1[MAXN],dp2[MAXN];
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d %d",&n,&m);
		for(int i=0;i<MAXN;i++) 
		{
			a[i]=b[i]=dp1[i]=dp2[i]=0;
		}
//		这里用 for来初始化数组也可以,用 memset一般初始化一些较大的结构体和数组比较省时
//		像空间比较小的如 100,用 for就比较快
//		memset(a,0,sizeof(a));
//		memset(b,0,sizeof(b));
//		memset(dp1,0,sizeof(dp1));
//		memset(dp2,0,sizeof(dp2));
		for(int i=0;i<n;i++)
		{
			scanf("%d",&a[i]);
			dp1[a[i]]=max(dp1[a[i]],dp1[a[i]-1]+1);
		}
		for(int i=0;i<m;i++)
		{
			scanf("%d",&b[i]);
			dp2[b[i]]=max(dp2[b[i]],dp2[b[i]-1]+1);
		}
		int ans=0;
		for(int i=0;i<n;i++)
		{
			ans=max(ans,min(dp1[a[i]],dp2[a[i]]));
		}
//		for(int i=0;i<m;i++) 任意找一个(a或 b) dp都可以 
//		{
//			ans=max(ans,min(dp1[b[i]],dp2[b[i]]));
//		} 
		printf("%d\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值