题目链接:点击打开链接
Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 216929 Accepted Submission(s): 51139
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
大意:题解:竟然不会记录元素首尾的位置,唉,看了别人的思路
给出一个序列,求出序列中连续的数的和的最大值并输出连续数列中首尾的位置,比如6 -1 5 4 -7 中6-1+5+4=14为连续数列中和最大的。
输入:
先输入t,表示t组测试数据;
每组测试数据第一个数为序列的个数;
输出:
输出要求的最大和,和求出的序列的首尾位置。
用数组 dp [ i ] 记录以 a [ i ] 结尾的最大连续子序列,然后只需找出 dp [ i ] 的最大值就行了
对于序列中的元素 a [ i ] 只有两种情况:
1、a [ i ] 成为一个子序列的终点,就是跟 以a [ i-1]结尾的子序列接上;这时: dp [ i ] = dp [ i-1] + a [ i ]
2、a [ i ] 成为一个新子序列的起点;这时: dp [ i ] = a[ i ];
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAX=1e5+10;
int n;
int a[MAX];
int dp[MAX]; // 表示以 a[i] 结尾的最大子序列
bool flag=0;
int main()
{
int t,text=0;
scanf("%d",&t);
while(t--)
{
memset(a,0,sizeof(a));
memset(dp,0,sizeof(dp));
int start,end;
int ans=-9999999;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
dp[i]=max(a[i],dp[i-1]+a[i]);
if(ans<dp[i])
{
ans=dp[i];
end=i;
}
}
int sum=0;
for(int i=end;i>=1;i--)
{
sum+=a[i];
if(sum==ans)
{
start=i;
}
}
if(flag) printf("\n");
printf("Case %d:\n%d %d %d\n",++text,ans,start,end);
flag=1;
//if(t) printf("\n"); 第一次见这样的换行格式 就是单纯的记录一下这样的换行格式
}
return 0;
}