DP之背包学习记录(二)

今天我们来学习完全背包,完全背包可以简化成01背包,先说下问题描述

题目 
N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 

完全背包是每种都有无限可用,但是我们会发现,一种物品最大的个数不可以超过V/c[i],因为容量有限,我们假设01背包的思路,得出状态转移方程

dp[i][v] = max(dp[i-1][v],dp[i-1][v-k*c[i]+k*w[i]])  0<=k*c[i]<=V

我们发现这样的算法的复杂度非常高,我们需要简化算法,这时候呢,我们就引入把一种物品,拆成多件物品的思想,我们引入二进制拆解法,

更高效的转化方法是:把第i种物品拆成费用为c[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足c[i]*2^k<V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。这样把每种物品拆成O(log(V/c[i]))件物品,是一个很大的改进。但我们有更优的O(VN)的算法。 * O(VN)的算法这个算法使用一维数组,先看伪代码: <pre class"example"> for i=1..N for v=0..V f[v]=max{f[v],f[v-c[i]]+w[i]}; 

具体二进制是什么思想呢

   把它的件数C 用二进制分解成若干个件数的集合,这里面数字可以组合成任意小于等于C的件数,而且不会重复,之所以叫二进制分解,是因为这样分解可以用数字的二进制形式来解释  
比如:7的二进制 7 = 111 它可以分解成 001 010 100 这三个数可以组合成任意小于等于7 的数,而且每种组合都会得到不同的数  

 15 = 1111 可分解成 0001  0010  0100  1000 四个数字  
 如果13 = 1101 则分解为 0001 0010 0100 0110 前三个数字可以组合成  7以内任意一个数,即1、2、4可以组合为1——7内所有的数,加上 0110 = 6 可以组合成任意一个大于6 小于等于13的数,比如12,可以让前面贡献6且后面也贡献6就行了。虽然有重复但总是能把 13 以内所有的数都考虑到了,基于这种思想去把多件物品转换为,多种一件物品,就可用01 背包求解了。  

  我们发现完全背包和01背包的区别就在于第二层循环,也就是体积循环的相反,因为加选一件第i种物品这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v= 0..V的顺序循环。

再贴下完全背包的代码

#include<iostream>
#include<cstdio>
#include<string.h>
#include<string>
#include<set>
#include<algorithm>
#include<cmath>


#define ll __int64
#define MAX 100009
#define Max 10000009
using namespace std;


int c[MAX];
int v[MAX];
int w[MAX];
int dp[MAX];
int V;
int n;


int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        int x,y;
        cin>>x>>y;
        V = y - x;
        for(int i = 1;i<=V;i++) dp[i] = Max;
        cin>>n;
        for(int i = 1;i<=n;i++)
        {
            cin>>v[i]>>w[i];
        }
        for(int i = 1;i<=n;i++)
        {
            for(int j = w[i];j<=V;j++)
            {
                dp[j] = min(dp[j],dp[j-w[i]]+v[i]);
            }
        }
        if(dp[V]==Max)
            cout<<"This is impossible."<<endl;
        else
            cout<<"The minimum amount of money in the piggy-bank is "<<dp[V]<<"."<<endl;
    }
    return 0;
}




先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值