元算法(集成算法):不同分类器的组合。类型可包括:不同算法集成、同一算法在不同设置下的集成、数据集不同部分分配给不同分类器后的集成
自举汇聚法(bagging法):从原数据集选择S次后得到S个新的数据集(大小相等,允许有重复)。(分类器权重相等)
boosting:与bagging类似,但是boosting是通过集中关注被已有的分类器错分的那些数据来获得新的分类器。(分类结果基于所有分类器的加权求和的结果)
单层决策树:基于单个特征来作出决策
说明:以下代码是单分类器的不同设置的集成,多个分类器组合效果会较好。推荐xgboost。
#encoding:utf-8
from numpy import *
def loadSimpData():
datMat = matrix([[ 1. , 2.1],
[ 2. , 1.1],
[ 1.3, 1. ],
[ 1. , 1. ],
[ 2. , 1. ]])
classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
return datMat,classLabels
#自适应数据加载
def loadDataSet(fileName):
numFeat = len(open(fileName).readline().split('\t')) #获取文件内容
dataMat = []; labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr =[]
curLine = line.strip().split('\t')
for i in range(numFeat-1):
lineArr.append(float(curLine[i]))
dataMat.append(lineArr)
labelMat.append(float(curLine[-1]))
return dataMat,labelMat
#单层决策树~生成
#通过阈值比较~阈值一侧为-1~另一侧为+1
def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):#直接分类这些数据
retArray = ones((shape(dataMatrix)[0],1))#均初始化为1
if threshIneq == 'lt':
retArray[dataMatrix[:,dimen] <= threshVal] = -1.0
else:
retArray[dataMatrix[:,dimen] > threshVal] = -1.0
return retArray
#找到最佳单层决策树
#遍历stumpClassify()所有可能输入值,并找到数据集最佳单层决策树
#dataArr数据 classLabels类别标签 D:权重向量
def buildStump(dataArr,classLabels,D):
dataMatrix = mat(dataArr); labelMat = mat(classLabels).T
m,n = shape(dataMatrix)
numSteps = 10.0; bestStump = {}; bestClasEst = mat(zeros((m,1)))
minError = inf #初始化最小错误率为无限大~
for i in range(n):#遍历所有特征
rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max();
stepSize = (rangeMax-rangeMin)/numSteps#通过计算最大最小值来确定步长
for j in range(-1,int(numSteps)+1):#再次遍历这些值
for inequal in ['lt', 'gt']: #去比较大于还是小于
threshVal = (rangeMin + float(j) * stepSize)
predictedVals = stumpClassify(dataMatrix,i,threshVal,inequal)#预测值
errArr = mat(ones((m,1)))#错误向量
errArr[predictedVals == labelMat] = 0#当预测值与标签值相同时,errArr置0
weightedError = D.T*errArr #错误分类的权重
print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError)
if weightedError < minError:#将当前错误率与历史最小错误率比较,如果当前值较小,就在词典bestStump中保存该单层决策树
minError = weightedError
bestClasEst = predictedVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal
return bestStump,minError,bestClasEst#返回字典、错误率、类别估计值
#基于单层决策树的AdaBoost~~~numIt:弱分类器数目
def adaBoostTrainDS(dataArr,classLabels,numIt=40):
weakClassArr = []
m = shape(dataArr)[0]
D = mat(ones((m,1))/m) #初始化向量D~概率分布向量,总和为1
aggClassEst = mat(zeros((m,1)))
for i in range(numIt):
bestStump,error,classEst = buildStump(dataArr,classLabels,D)#建树~得到最小错误率
#print "D:",D.T
alpha = float(0.5*log((1.0-error)/max(error,1e-16)))#alpha告诉总分类器本次单层决策树结果输出的权重, max(error,eps) 确保在error=0时不会除0溢出~
bestStump['alpha'] = alpha#加入到bestStump字典中
weakClassArr.append(bestStump) #store Stump Params in Array
#print "classEst: ",classEst.T
#权重向量更新D=((D’t)*(e’-x))/sum(D)~~ ’号我在这里表示次幂
expon = multiply(-1*alpha*mat(classLabels).T,classEst)
D = multiply(D,exp(expon))
D = D/D.sum()
#所有分类器的训练误差计算,如果为0,则跳出循环
aggClassEst += alpha*classEst#得到类别估计值
#print "aggClassEst: ",aggClassEst.T
aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1)))#总错误率
errorRate = aggErrors.sum()/m
print "total error: ",errorRate
if errorRate == 0.0: break
return weakClassArr,aggClassEst
#所有分类器的结果加权求和,得到最终结果
#利用训练出的多个弱分类器进行分类
#输入:一个或者多个待分类样例datToClass,多个弱分类器组成的数组classifierArr
def adaClassify(datToClass,classifierArr):
dataMatrix = mat(datToClass)#do stuff similar to last aggClassEst in adaBoostTrainDS~转numpy矩阵
m = shape(dataMatrix)[0]#得到分类样例个数
aggClassEst = mat(zeros((m,1)))#构建列向量
for i in range(len(classifierArr)):#遍历弱分类器
classEst = stumpClassify(dataMatrix,classifierArr[i]['dim'],\
classifierArr[i]['thresh'],\
classifierArr[i]['ineq'])#call stump classify
aggClassEst += classifierArr[i]['alpha']*classEst#得到类别估计值
print aggClassEst
return sign(aggClassEst)#返回aggClassEst的符号,即大于0为+1~小于0为-1
#输入:predStrengths-分类器的预测强度 classLabels类别标签
def plotROC(predStrengths, classLabels):
import matplotlib.pyplot as plt
cur = (1.0,1.0) #光标位置
ySum = 0.0 #用于计算AUC值
numPosClas = sum(array(classLabels)==1.0)#计算正例数目
yStep = 1/float(numPosClas); xStep = 1/float(len(classLabels)-numPosClas)#x,y轴步长
sortedIndicies = predStrengths.argsort()#get sorted index, it's reverse
fig = plt.figure()
fig.clf()
ax = plt.subplot(111)
#loop through all the values, drawing a line segment at each point
for index in sortedIndicies.tolist()[0]:
if classLabels[index] == 1.0:
delX = 0; delY = yStep;
else:
delX = xStep; delY = 0;
ySum += cur[1]
#draw line from cur to (cur[0]-delX,cur[1]-delY)
#分类代价计算
ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
cur = (cur[0]-delX,cur[1]-delY)
ax.plot([0,1],[0,1],'b--')
plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
plt.title('ROC curve for AdaBoost horse colic detection system')
ax.axis([0,1,0,1])
plt.show()
print "the Area Under the Curve is: ",ySum*xStep