import numpy
from numpy import *
import matplotlib.pyplot as plt
def loadSimpleData():
dataMat=matrix([[1.,2.1],
[2.,1.1],
[1.3,1.],
[1.,1.],
[2.,1.]])
classLabels=[1.0,1.0,-1.0,-1.0,1.0]
return dataMat,classLabels
def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):
retArray=ones((shape(dataMatrix)[0],1))
if threshIneq=='lt':
retArray[dataMatrix[:,dimen]<=threshVal]=-1.0
else:
retArray[dataMatrix[:,dimen]<=threshVal]=-1.0
return retArray
def buildStump(dataArr,classLabels,D):
dataMatrix=mat(dataArr);labelMat=mat(classLabels).T
m,n=shape(dataMatrix)
numsteps=10.0;bestStump={};bestClassEst=mat(zeros((m,1)))
minError=inf
for i in range(n):
rangeMin=dataMatrix[:,i].min();rangeMax=dataMatrix[:,i].max()
stepSize=(rangeMax-rangeMin)/numsteps
for j in range(-1,int(numsteps)+1):
for inequal in ['lt','gt']:
threshVal=rangeMin+float(j)*stepSize;
predictVals=stumpClassify(dataMatrix,i,threshVal,inequal)
errArr=mat(ones((m,1)))
errArr[predictVals==labelMat]=0
weightedError=D.T*errArr
print("split:dim %d,thresh %.2f,thresh inequal:%s,the weighted error is %.3f"%\
(i,threshVal,inequal,weightedError))
if weightedError<minError:
minError=weightedError
bestStump['dim']=i
bestStump['threshVal']=threshVal
bestStump['ineq']=inequal
bestClassEst=predictVals.copy()
return bestStump,minError,bestClassEst
def adaBoostTrainDS(dataArr,classLabels,nunIt=40):
weakClassArr=[]
m=shape(dataArr)[0]
D=mat(ones((m,1))/m)
aggClassEst=mat(zeros((m,1)))
for i in range(nunIt):
bestStump,error,classEst=buildStump(dataArr,classLabels,D)
print('D:',D.T)
alpha=float(0.5*log((1.0-error)/max(error,1e-16)))
bestStump['alpha']=alpha
weakClassArr.append(bestStump)
print('classEst:',classEst.T)
expon=multiply(-1*alpha*mat(classLabels).T,classEst)
D=multiply(D,exp(expon))
D=D/D.sum()
aggClassEst+=alpha*classEst
print('aggClassEst',aggClassEst.T)
aggErrors=multiply(sign(aggClassEst)!=mat(classLabels).T,ones((m,1)))
errorRate=aggErrors.sum()/m
print('total error:',errorRate)
if errorRate==0.0:break
return weakClassArr
def adaClassify(datToClass,classifierArr):
dataMatrix=mat(datToClass)
m=shape(dataMatrix)[0]
aggClassEst=mat(zeros((m,1)))
for i in range(len(classifierArr)):
classEst=stumpClassify(dataMatrix,classifierArr[i]['dim'],\
classifierArr[i]['threshVal'],\
classifierArr[i]['ineq'])
aggClassEst+=classifierArr[i]['alpha']*classEst
print(aggClassEst)
return sign(aggClassEst)
def loadDataSet(filename):
numFeat=len(open(filename).readline().split('\t'))
dataMat=[];labelMat=[]
fr=open(filename)
for line in fr.readlines():
lineArr=[]
curLine=line.strip().split('\t')
for i in range(numFeat-1):
lineArr.append(float(curLine[i]))
dataMat.append(lineArr)
labelMat.append(float(curLine[-1]))
return dataMat,labelMat
data,labels=loadDataSet(r'C:/Users/huashuo111/Desktop/python/machinelearninginaction/Ch07/horseColicTraining2.txt')
weakClassArr=adaBoostTrainDS(data,labels,1)
testArr,testLabelArr=loadDataSet(r'C:/Users/huashuo111/Desktop/python/machinelearninginaction/Ch07/horseColicTest2.txt')
prediction1=adaClassify(testArr,weakClassArr)
errArr=mat(ones((67,1)))
a=errArr[prediction1!=mat(testLabelArr).T].sum()
print(a)
机器学习实战之AdaBoost
最新推荐文章于 2022-10-29 15:00:00 发布