HDU 1325 Is It A Tree? ( 有向图判断环

本文介绍了一种通过检查节点的入度来确定有向图是否包含环的方法,并提供了一个具体的AC代码实现。该方法适用于判断数据结构中树的定义是否被满足。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Is It A Tree?

Description

A tree is a well-known data structure that is either empty (null, void, nothing) or is a set of one or more nodes connected by directed edges between nodes satisfying the following properties.
There is exactly one node, called the root, to which no directed edges point.

Every node except the root has exactly one edge pointing to it.

There is a unique sequence of directed edges from the root to each node.

For example, consider the illustrations below, in which nodes are represented by circles and edges are represented by lines with arrowheads. The first two of these are trees, but the last is not.
这里写图片描述这里写图片描述这里写图片描述
In this problem you will be given several descriptions of collections of nodes connected by directed edges. For each of these you are to determine if the collection satisfies the definition of a tree or not.

Input

The input will consist of a sequence of descriptions (test cases) followed by a pair of negative integers. Each test case will consist of a sequence of edge descriptions followed by a pair of zeroes Each edge description will consist of a pair of integers; the first integer identifies the node from which the edge begins, and the second integer identifies the node to which the edge is directed. Node numbers will always be greater than zero.

Output

For each test case display the line Case k is a tree." or the lineCase k is not a tree.”, where k corresponds to the test case number (they are sequentially numbered starting with 1).

Sample Input

6 8 5 3 5 2 6 4
5 6 0 0
8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0
3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1

Sample Output

Case 1 is a tree.
Case 2 is a tree.
Case 3 is not a tree.

题意

有向图判断是否有环

题解:

有向图 度数大于等于2肯定存在环路

AC代码

#include <bits/stdc++.h>
using namespace std;

const int maxn = 10010;
bool vis[maxn];
int indeg[maxn];
int main()
{
    int cas = 0;
    int a, b;
    while(scanf("%d%d", &a, &b),a>=0||b>=0)
    {
        if(a==0 && b==0)
        {
            printf("Case %d is a tree.\n", ++cas);
            continue;
        }
        int maxx = 0;
        if(a > maxx) maxx = a;
        if(b > maxx) maxx = b;
        memset(vis, false, sizeof(vis));    
        memset(indeg, 0, sizeof(indeg));
        vis[a] = vis[b] = true;     
        indeg[b]++;                 
        while(scanf("%d%d", &a, &b), a!=0||b!=0)
        {
            if(a > maxx) maxx = a;
            if(b > maxx) maxx = b;
            indeg[b]++;             
            vis[a] = vis[b] = true; 
        }
        bool flag = true;
        int k = 0;
        for(int i = 1; i <= maxx; i++)
            if(vis[i] && indeg[i] > 1)   
            {
                flag = false;
                break;
            }
        for(int i = 1; i <= maxx; i++)
            if(vis[i] && indeg[i] == 0)     
                k++;
        if(!flag || k != 1)
            printf("Case %d is not a tree.\n", ++cas);
        else
            printf("Case %d is a tree.\n", ++cas);
    }
    return 0;
}
HDU(Hangzhou Dianzi University)OJ 中经常涉及到几何计算的问题,其中“判断两条线段是否相交”是一个经典的算法问题。以下是关于如何判断两线段是否相交的基本思路及其实现步骤: ### 判断两条线段相交的核心思想 可以利用向量叉积以及端点位置的关系来确定两条线段是否相交。 #### 具体步骤: 1. **定义基本概念** - 假设两条线段分别为 `AB` 和 `CD`。 - 使用二维平面中的坐标表示各顶点:A(x₁,y₁), B(x₂,y₂),C(x₃,y₃) ,D(x₄,y₄)。 2. **叉积的作用** 叉积可以帮助我们了解两点相对于一条直线的位置关系。 对于三个点 P、Q、R ,我们可以用叉乘 `(Q-P)x(R-P)` 来检测 R 是否在 QP 直线的一侧还是另一侧。 如果结果为正数,则表明顺时针;如果负则逆时针;若等于0则共线。 3. **快速排斥实验** 首先做一个矩形包围盒测试——即检查两个线段所在的最小外接矩形是否有重叠区域。如果没有重叠直接判定为不相交。 4. **跨立试验 (Cross-over Test)** 确认每个线段的两端分别位于另一个线段两侧即可认为它们交叉了。这通过上述提到过的叉积运算完成。 5. **特殊情况处理** 包含但不限于如下的几种情况需要单独讨论: - 完全重合的部分; - 存在一个公共端点但并不完全穿过等边缘状况。 6. **代码框架示例(Pseudo code):** ```python def cross_product(p1,p2,p3): return (p2[0]-p1[0])*(p3[1]-p1[1])-(p2[1]-p1[1])*(p3[0]-p1[0]) def on_segment(p,q,r): if ((q[0] <= max(p[0], r[0])) and (q[0] >= min(p[0], r[0])) and (q[1] <= max(p[1], r[1])) and (q[1] >= min(p[1], r[1]))): return True; return False; def do_segments_intersect(A,B,C,D): # 计算四个方向的叉积值 o1 = cross_product(A, C, B) o2 = cross_product(A, D, B) o3 = cross_product(C, A, D) o4 = cross_product(C, B, D) # 标准情况判断 if(o1 !=o2 && o3!=o4): return True # 特殊情况逐一验证... ``` 7. 最终结合所有条件得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值