Cannot copy param 0 weights from layer 'conv6'; shape mismatch. Source param shape is 21 512 1 1

今天在使用别人的模型训练自己的数据时候,遇到了如下错误:

Cannot copy param 0 weights from layer 'conv6'; shape mismatch.  Source param shape is 21 512 1 1 (10752); target param shape is 5 512 1 1 (2560). To learn this layer's parameters from scratch rather than copying from a saved net, rename the layer.
*** Check failure stack trace: ***
    @     0x7fd7a4235dbd  google::LogMessage::Fail()
    @     0x7fd7a4237c5d  google::LogMessage::SendToLog()
    @     0x7fd7a42359ac  google::LogMessage::Flush()
    @     0x7fd7a423857e  google::LogMessageFatal::~LogMessageFatal()
    @     0x7fd7a48db897  caffe::Net<>::CopyTrainedLayersFrom()
    @     0x7fd7a48e3c62  caffe::Net<>::CopyTrainedLayersFromBinaryProto()
    @     0x7fd7a48e3cc6  caffe::Net<>::CopyTrainedLayersFrom()
    @           0x406764  CopyLayers()
    @           0x408315  train()
    @           0x405c4c  main
    @     0x7fd7a2d93f45  (unknown)
    @           0x40641d  (unknown)
Aborted (core dumped)

原因:在conv6层预训练的模型输出类别数目是21,而我的数目是5,所以出现了错误。所以要从零开始学习这个层的参数,而不是从保存的网络中复制,重命名该层。

解决方法:将conv6改为conv6_6

原来的层:

layer {
  name: "conv6"
  type: "Convolution"
  bottom: "conv5_4"
  top: "conv6"
  param {
    lr_mult: 10
    decay_mult: 1
  }
  param {
    lr_mult: 20
    decay_mult: 1
  }
  convolution_param {
    num_output: 5
    kernel_size: 1
    stride: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

修改后的层:

layer {
  name: "conv6_6"
  type: "Convolution"
  bottom: "conv5_4"
  top: "conv6_6"
  param {
    lr_mult: 10
    decay_mult: 1
  }
  param {
    lr_mult: 20
    decay_mult: 1
  }
  convolution_param {
    num_output: 5
    kernel_size: 1
    stride: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

 

Last Error Received: Process: VR Architecture If this error persists, please contact the developers with the error details. Raw Error Details: RuntimeError: "Error(s) in loading state_dict for CascadedASPPNet: Missing key(s) in state_dict: "stg1_low_band_net.enc1.conv1.conv.0.weight", "stg1_low_band_net.enc1.conv1.conv.1.weight", "stg1_low_band_net.enc1.conv1.conv.1.bias", "stg1_low_band_net.enc1.conv1.conv.1.running_mean", "stg1_low_band_net.enc1.conv1.conv.1.running_var", "stg1_low_band_net.enc1.conv2.conv.0.weight", "stg1_low_band_net.enc1.conv2.conv.1.weight", "stg1_low_band_net.enc1.conv2.conv.1.bias", "stg1_low_band_net.enc1.conv2.conv.1.running_mean", "stg1_low_band_net.enc1.conv2.conv.1.running_var", "stg1_low_band_net.enc2.conv1.conv.0.weight", "stg1_low_band_net.enc2.conv1.conv.1.weight", "stg1_low_band_net.enc2.conv1.conv.1.bias", "stg1_low_band_net.enc2.conv1.conv.1.running_mean", "stg1_low_band_net.enc2.conv1.conv.1.running_var", "stg1_low_band_net.enc2.conv2.conv.0.weight", "stg1_low_band_net.enc2.conv2.conv.1.weight", "stg1_low_band_net.enc2.conv2.conv.1.bias", "stg1_low_band_net.enc2.conv2.conv.1.running_mean", "stg1_low_band_net.enc2.conv2.conv.1.running_var", "stg1_low_band_net.enc3.conv1.conv.0.weight", "stg1_low_band_net.enc3.conv1.conv.1.weight", "stg1_low_band_net.enc3.conv1.conv.1.bias", "stg1_low_band_net.enc3.conv1.conv.1.running_mean", "stg1_low_band_net.enc3.conv1.conv.1.running_var", "stg1_low_band_net.enc3.conv2.conv.0.weight", "stg1_low_band_net.enc3.conv2.conv.1.weight", "stg1_low_band_net.enc3.conv2.conv.1.bias", "stg1_low_band_net.enc3.conv2.conv.1.running_mean", "stg1_low_band_net.enc3.conv2.conv.1.running_var", "stg1_low_band_net.enc4.conv1.conv.0.weight", "stg1_low_band_net.enc4.conv1.conv.1.weight", "stg1_low_band_net.enc4.conv1.conv.1.bias", "stg1_low_band_net.enc4.conv1.conv.1.running_mean", "stg1_low_band_net.enc4.conv1.conv.1.running_var", "stg1_low_band_net.enc4.conv2.conv.0.weight", "stg1_low_band_net.enc4.conv2.conv.1.weight", "stg1_low_band_net.enc4.conv2.conv.1.bias", "stg1_low_band_net.enc4.conv2.conv.1.running_mean", "stg1_low_band_net.enc4.conv2.conv.1.running_var", "stg1_low_band_net.aspp.conv1.1.conv.0.weight", "stg1_low_band_net.aspp.conv1.1.conv.1.weight", "stg1_low_band_net.aspp.conv1.1.conv.1.bias", "stg1_low_band_net.aspp.conv1.1.conv.1.running_mean", "stg1_low_band_net.aspp.conv1.1.conv.1.running_var", "stg1_low_band_net.aspp.conv2.conv.0.weight", "stg1_low_band_net.aspp.conv2.conv.1.weight", "stg1_low_band_net.aspp.conv2.conv.1.bias", "stg1_low_band_net.aspp.conv2.conv.1.running_mean", "stg1_low_band_net.aspp.conv2.conv.1.running_var", "stg1_low_band_net.aspp.conv3.conv.0.weight", "stg1_low_band_net.aspp.conv3.conv.1.weight", "stg1_low_band_net.aspp.conv3.conv.2.weight", "stg1_low_band_net.aspp.conv3.conv.2.bias", "stg1_low_band_net.aspp.conv3.conv.2.running_mean", "stg1_low_band_net.aspp.conv3.conv.2.running_var", "stg1_low_band_net.aspp.conv4.conv.0.weight", "stg1_low_band_net.aspp.conv4.conv.1.weight", "stg1_low_band_net.aspp.conv4.conv.2.weight", "stg1_low_band_net.aspp.conv4.conv.2.bias", "stg1_low_band_net.aspp.conv4.conv.2.running_mean", "stg1_low_band_net.aspp.conv4.conv.2.running_var", "stg1_low_band_net.aspp.conv5.conv.0.weight", "stg1_low_band_net.aspp.conv5.conv.1.weight", "stg1_low_band_net.aspp.conv5.conv.2.weight", "stg1_low_band_net.aspp.conv5.conv.2.bias", "stg1_low_band_net.aspp.conv5.conv.2.running_mean", "stg1_low_band_net.aspp.conv5.conv.2.running_var", "stg1_low_band_net.aspp.bottleneck.0.conv.0.weight", "stg1_low_band_net.aspp.bottleneck.0.conv.1.weight", "stg1_low_band_net.aspp.bottleneck.0.conv.1.bias", "stg1_low_band_net.aspp.bottleneck.0.conv.1.running_mean", "stg1_low_band_net.aspp.bottleneck.0.conv.1.running_var", "stg1_low_band_net.dec4.conv.conv.0.weight", "stg1_low_band_net.dec4.conv.conv.1.weight", "stg1_low_band_net.dec4.conv.conv.1.bias", "stg1_low_band_net.dec4.conv.conv.1.running_mean", "stg1_low_band_net.dec4.conv.conv.1.running_var", "stg1_low_band_net.dec3.conv.conv.0.weight", "stg1_low_band_net.dec3.conv.conv.1.weight", "stg1_low_band_net.dec3.conv.conv.1.bias", "stg1_low_band_net.dec3.conv.conv.1.running_mean", "stg1_low_band_net.dec3.conv.conv.1.running_var", "stg1_low_band_net.dec2.conv.conv.0.weight", "stg1_low_band_net.dec2.conv.conv.1.weight", "stg1_low_band_net.dec2.conv.conv.1.bias", "stg1_low_band_net.dec2.conv.conv.1.running_mean", "stg1_low_band_net.dec2.conv.conv.1.running_var", "stg1_low_band_net.dec1.conv.conv.0.weight", "stg1_low_band_net.dec1.conv.conv.1.weight", "stg1_low_band_net.dec1.conv.conv.1.bias", "stg1_low_band_net.dec1.conv.conv.1.running_mean", "stg1_low_band_net.dec1.conv.conv.1.running_var", "stg1_high_band_net.enc1.conv1.conv.0.weight", "stg1_high_band_net.enc1.conv1.conv.1.weight", "stg1_high_band_net.enc1.conv1.conv.1.bias", "stg1_high_band_net.enc1.conv1.conv.1.running_mean", "stg1_high_band_net.enc1.conv1.conv.1.running_var", "stg1_high_band_net.enc1.conv2.conv.0.weight", "stg1_high_band_net.enc1.conv2.conv.1.weight", "stg1_high_band_net.enc1.conv2.conv.1.bias", "stg1_high_band_net.enc1.conv2.conv.1.running_mean", "stg1_high_band_net.enc1.conv2.conv.1.running_var", "stg1_high_band_net.aspp.conv3.conv.2.weight", "stg1_high_band_net.aspp.conv3.conv.2.bias", "stg1_high_band_net.aspp.conv3.conv.2.running_mean", "stg1_high_band_net.aspp.conv3.conv.2.running_var", "stg1_high_band_net.aspp.conv4.conv.2.weight", "stg1_high_band_net.aspp.conv4.conv.2.bias", "stg1_high_band_net.aspp.conv4.conv.2.running_mean", "stg1_high_band_net.aspp.conv4.conv.2.running_var", "stg1_high_band_net.aspp.conv5.conv.2.weight", "stg1_high_band_net.aspp.conv5.conv.2.bias", "stg1_high_band_net.aspp.conv5.conv.2.running_mean", "stg1_high_band_net.aspp.conv5.conv.2.running_var", "stg1_high_band_net.aspp.bottleneck.0.conv.0.weight", "stg1_high_band_net.aspp.bottleneck.0.conv.1.weight", "stg1_high_band_net.aspp.bottleneck.0.conv.1.bias", "stg1_high_band_net.aspp.bottleneck.0.conv.1.running_mean", "stg1_high_band_net.aspp.bottleneck.0.conv.1.running_var", "stg1_high_band_net.dec4.conv.conv.0.weight", "stg1_high_band_net.dec4.conv.conv.1.weight", "stg1_high_band_net.dec4.conv.conv.1.bias", "stg1_high_band_net.dec4.conv.conv.1.running_mean", "stg1_high_band_net.dec4.conv.conv.1.running_var", "stg1_high_band_net.dec3.conv.conv.0.weight", "stg1_high_band_net.dec3.conv.conv.1.weight", "stg1_high_band_net.dec3.conv.conv.1.bias", "stg1_high_band_net.dec3.conv.conv.1.running_mean", "stg1_high_band_net.dec3.conv.conv.1.running_var", "stg1_high_band_net.dec2.conv.conv.0.weight", "stg1_high_band_net.dec2.conv.conv.1.weight", "stg1_high_band_net.dec2.conv.conv.1.bias", "stg1_high_band_net.dec2.conv.conv.1.running_mean", "stg1_high_band_net.dec2.conv.conv.1.running_var", "stg1_high_band_net.dec1.conv.conv.0.weight", "stg1_high_band_net.dec1.conv.conv.1.weight", "stg1_high_band_net.dec1.conv.conv.1.bias", "stg1_high_band_net.dec1.conv.conv.1.running_mean", "stg1_high_band_net.dec1.conv.conv.1.running_var", "stg2_bridge.conv.0.weight", "stg2_bridge.conv.1.weight", "stg2_bridge.conv.1.bias", "stg2_bridge.conv.1.running_mean", "stg2_bridge.conv.1.running_var", "stg2_full_band_net.enc1.conv1.conv.0.weight", "stg2_full_band_net.enc1.conv1.conv.1.weight", "stg2_full_band_net.enc1.conv1.conv.1.bias", "stg2_full_band_net.enc1.conv1.conv.1.running_mean", "stg2_full_band_net.enc1.conv1.conv.1.running_var", "stg2_full_band_net.enc1.conv2.conv.0.weight", "stg2_full_band_net.enc1.conv2.conv.1.weight", "stg2_full_band_net.enc1.conv2.conv.1.bias", "stg2_full_band_net.enc1.conv2.conv.1.running_mean", "stg2_full_band_net.enc1.conv2.conv.1.running_var", "stg2_full_band_net.enc2.conv1.conv.0.weight", "stg2_full_band_net.enc2.conv1.conv.1.weight", "stg2_full_band_net.enc2.conv1.conv.1.bias", "stg2_full_band_net.enc2.conv1.conv.1.running_mean", "stg2_full_band_net.enc2.conv1.conv.1.running_var", "stg2_full_band_net.enc2.conv2.conv.0.weight", "stg2_full_band_net.enc2.conv2.conv.1.weight", "stg2_full_band_net.enc2.conv2.conv.1.bias", "stg2_full_band_net.enc2.conv2.conv.1.running_mean", "stg2_full_band_net.enc2.conv2.conv.1.running_var", "stg2_full_band_net.enc3.conv1.conv.0.weight", "stg2_full_band_net.enc3.conv1.conv.1.weight", "stg2_full_band_net.enc3.conv1.conv.1.bias", "stg2_full_band_net.enc3.conv1.conv.1.running_mean", "stg2_full_band_net.enc3.conv1.conv.1.running_var", "stg2_full_band_net.enc3.conv2.conv.0.weight", "stg2_full_band_net.enc3.conv2.conv.1.weight", "stg2_full_band_net.enc3.conv2.conv.1.bias", "stg2_full_band_net.enc3.conv2.conv.1.running_mean", "stg2_full_band_net.enc3.conv2.conv.1.running_var", "stg2_full_band_net.enc4.conv1.conv.0.weight", "stg2_full_band_net.enc4.conv1.conv.1.weight", "stg2_full_band_net.enc4.conv1.conv.1.bias", "stg2_full_band_net.enc4.conv1.conv.1.running_mean", "stg2_full_band_net.enc4.conv1.conv.1.running_var", "stg2_full_band_net.enc4.conv2.conv.0.weight", "stg2_full_band_net.enc4.conv2.conv.1.weight", "stg2_full_band_net.enc4.conv2.conv.1.bias", "stg2_full_band_net.enc4.conv2.conv.1.running_mean", "stg2_full_band_net.enc4.conv2.conv.1.running_var", "stg2_full_band_net.aspp.conv1.1.conv.0.weight", "stg2_full_band_net.aspp.conv1.1.conv.1.weight", "stg2_full_band_net.aspp.conv1.1.conv.1.bias", "stg2_full_band_net.aspp.conv1.1.conv.1.running_mean", "stg2_full_band_net.aspp.conv1.1.conv.1.running_var", "stg2_full_band_net.aspp.conv2.conv.0.weight", "stg2_full_band_net.aspp.conv2.conv.1.weight", "stg2_full_band_net.aspp.conv2.conv.1.bias", "stg2_full_band_net.aspp.conv2.conv.1.running_mean", "stg2_full_band_net.aspp.conv2.conv.1.running_var", "stg2_full_band_net.aspp.conv3.conv.0.weight", "stg2_full_band_net.aspp.conv3.conv.1.weight", "stg2_full_band_net.aspp.conv3.conv.2.weight", "stg2_full_band_net.aspp.conv3.conv.2.bias", "stg2_full_band_net.aspp.conv3.conv.2.running_mean", "stg2_full_band_net.aspp.conv3.conv.2.running_var", "stg2_full_band_net.aspp.conv4.conv.0.weight", "stg2_full_band_net.aspp.conv4.conv.1.weight", "stg2_full_band_net.aspp.conv4.conv.2.weight", "stg2_full_band_net.aspp.conv4.conv.2.bias", "stg2_full_band_net.aspp.conv4.conv.2.running_mean", "stg2_full_band_net.aspp.conv4.conv.2.running_var", "stg2_full_band_net.aspp.conv5.conv.0.weight", "stg2_full_band_net.aspp.conv5.conv.1.weight", "stg2_full_band_net.aspp.conv5.conv.2.weight", "stg2_full_band_net.aspp.conv5.conv.2.bias", "stg2_full_band_net.aspp.conv5.conv.2.running_mean", "stg2_full_band_net.aspp.conv5.conv.2.running_var", "stg2_full_band_net.aspp.bottleneck.0.conv.0.weight", "stg2_full_band_net.aspp.bottleneck.0.conv.1.weight", "stg2_full_band_net.aspp.bottleneck.0.conv.1.bias", "stg2_full_band_net.aspp.bottleneck.0.conv.1.running_mean", "stg2_full_band_net.aspp.bottleneck.0.conv.1.running_var", "stg2_full_band_net.dec4.conv.conv.0.weight", "stg2_full_band_net.dec4.conv.conv.1.weight", "stg2_full_band_net.dec4.conv.conv.1.bias", "stg2_full_band_net.dec4.conv.conv.1.running_mean", "stg2_full_band_net.dec4.conv.conv.1.running_var", "stg2_full_band_net.dec3.conv.conv.0.weight", "stg2_full_band_net.dec3.conv.conv.1.weight", "stg2_full_band_net.dec3.conv.conv.1.bias", "stg2_full_band_net.dec3.conv.conv.1.running_mean", "stg2_full_band_net.dec3.conv.conv.1.running_var", "stg2_full_band_net.dec2.conv.conv.0.weight", "stg2_full_band_net.dec2.conv.conv.1.weight", "stg2_full_band_net.dec2.conv.conv.1.bias", "stg2_full_band_net.dec2.conv.conv.1.running_mean", "stg2_full_band_net.dec2.conv.conv.1.running_var", "stg2_full_band_net.dec1.conv.conv.0.weight", "stg2_full_band_net.dec1.conv.conv.1.weight", "stg2_full_band_net.dec1.conv.conv.1.bias", "stg2_full_band_net.dec1.conv.conv.1.running_mean", "stg2_full_band_net.dec1.conv.conv.1.running_var", "stg3_bridge.conv.0.weight", "stg3_bridge.conv.1.weight", "stg3_bridge.conv.1.bias", "stg3_bridge.conv.1.running_mean", "stg3_bridge.conv.1.running_var", "stg3_full_band_net.enc1.conv1.conv.0.weight", "stg3_full_band_net.enc1.conv1.conv.1.weight", "stg3_full_band_net.enc1.conv1.conv.1.bias", "stg3_full_band_net.enc1.conv1.conv.1.running_mean", "stg3_full_band_net.enc1.conv1.conv.1.running_var", "stg3_full_band_net.enc1.conv2.conv.0.weight", "stg3_full_band_net.enc1.conv2.conv.1.weight", "stg3_full_band_net.enc1.conv2.conv.1.bias", "stg3_full_band_net.enc1.conv2.conv.1.running_mean", "stg3_full_band_net.enc1.conv2.conv.1.running_var", "stg3_full_band_net.aspp.conv3.conv.2.weight", "stg3_full_band_net.aspp.conv3.conv.2.bias", "stg3_full_band_net.aspp.conv3.conv.2.running_mean", "stg3_full_band_net.aspp.conv3.conv.2.running_var", "stg3_full_band_net.aspp.conv4.conv.2.weight", "stg3_full_band_net.aspp.conv4.conv.2.bias", "stg3_full_band_net.aspp.conv4.conv.2.running_mean", "stg3_full_band_net.aspp.conv4.conv.2.running_var", "stg3_full_band_net.aspp.conv5.conv.2.weight", "stg3_full_band_net.aspp.conv5.conv.2.bias", "stg3_full_band_net.aspp.conv5.conv.2.running_mean", "stg3_full_band_net.aspp.conv5.conv.2.running_var", "stg3_full_band_net.aspp.bottleneck.0.conv.0.weight", "stg3_full_band_net.aspp.bottleneck.0.conv.1.weight", "stg3_full_band_net.aspp.bottleneck.0.conv.1.bias", "stg3_full_band_net.aspp.bottleneck.0.conv.1.running_mean", "stg3_full_band_net.aspp.bottleneck.0.conv.1.running_var", "stg3_full_band_net.dec4.conv.conv.0.weight", "stg3_full_band_net.dec4.conv.conv.1.weight", "stg3_full_band_net.dec4.conv.conv.1.bias", "stg3_full_band_net.dec4.conv.conv.1.running_mean", "stg3_full_band_net.dec4.conv.conv.1.running_var", "stg3_full_band_net.dec3.conv.conv.0.weight", "stg3_full_band_net.dec3.conv.conv.1.weight", "stg3_full_band_net.dec3.conv.conv.1.bias", "stg3_full_band_net.dec3.conv.conv.1.running_mean", "stg3_full_band_net.dec3.conv.conv.1.running_var", "stg3_full_band_net.dec2.conv.conv.0.weight", "stg3_full_band_net.dec2.conv.conv.1.weight", "stg3_full_band_net.dec2.conv.conv.1.bias", "stg3_full_band_net.dec2.conv.conv.1.running_mean", "stg3_full_band_net.dec2.conv.conv.1.running_var", "stg3_full_band_net.dec1.conv.conv.0.weight", "stg3_full_band_net.dec1.conv.conv.1.weight", "stg3_full_band_net.dec1.conv.conv.1.bias", "stg3_full_band_net.dec1.conv.conv.1.running_mean", "stg3_full_band_net.dec1.conv.conv.1.running_var", "aux1_out.weight", "aux2_out.weight". Unexpected key(s) in state_dict: "stg2_low_band_net.0.enc1.conv.0.weight", "stg2_low_band_net.0.enc1.conv.1.weight", "stg2_low_band_net.0.enc1.conv.1.bias", "stg2_low_band_net.0.enc1.conv.1.running_mean", "stg2_low_band_net.0.enc1.conv.1.running_var", "stg2_low_band_net.0.enc1.conv.1.num_batches_tracked", "stg2_low_band_net.0.enc2.conv1.conv.0.weight", "stg2_low_band_net.0.enc2.conv1.conv.1.weight", "stg2_low_band_net.0.enc2.conv1.conv.1.bias", "stg2_low_band_net.0.enc2.conv1.conv.1.running_mean", "stg2_low_band_net.0.enc2.conv1.conv.1.running_var", "stg2_low_band_net.0.enc2.conv1.conv.1.num_batches_tracked", "stg2_low_band_net.0.enc2.conv2.conv.0.weight", "stg2_low_band_net.0.enc2.conv2.conv.1.weight", "stg2_low_band_net.0.enc2.conv2.conv.1.bias", "stg2_low_band_net.0.enc2.conv2.conv.1.running_mean", "stg2_low_band_net.0.enc2.conv2.conv.1.running_var", "stg2_low_band_net.0.enc2.conv2.conv.1.num_batches_tracked", "stg2_low_band_net.0.enc3.conv1.conv.0.weight", "stg2_low_band_net.0.enc3.conv1.conv.1.weight", "stg2_low_band_net.0.enc3.conv1.conv.1.bias", "stg2_low_band_net.0.enc3.conv1.conv.1.running_mean", "stg2_low_band_net.0.enc3.conv1.conv.1.running_var", "stg2_low_band_net.0.enc3.conv1.conv.1.num_batches_tracked", "stg2_low_band_net.0.enc3.conv2.conv.0.weight", "stg2_low_band_net.0.enc3.conv2.conv.1.weight", "stg2_low_band_net.0.enc3.conv2.conv.1.bias", "stg2_low_band_net.0.enc3.conv2.conv.1.running_mean", "stg2_low_band_net.0.enc3.conv2.conv.1.running_var", "stg2_low_band_net.0.enc3.conv2.conv.1.num_batches_tracked", "stg2_low_band_net.0.enc4.conv1.conv.0.weight", "stg2_low_band_net.0.enc4.conv1.conv.1.weight", "stg2_low_band_net.0.enc4.conv1.conv.1.bias", "stg2_low_band_net.0.enc4.conv1.conv.1.running_mean", "stg2_low_band_net.0.enc4.conv1.conv.1.running_var", "stg2_low_band_net.0.enc4.conv1.conv.1.num_batches_tracked", "stg2_low_band_net.0.enc4.conv2.conv.0.weight", "stg2_low_band_net.0.enc4.conv2.conv.1.weight", "stg2_low_band_net.0.enc4.conv2.conv.1.bias", "stg2_low_band_net.0.enc4.conv2.conv.1.running_mean", "stg2_low_band_net.0.enc4.conv2.conv.1.running_var", "stg2_low_band_net.0.enc4.conv2.conv.1.num_batches_tracked", "stg2_low_band_net.0.enc5.conv1.conv.0.weight", "stg2_low_band_net.0.enc5.conv1.conv.1.weight", "stg2_low_band_net.0.enc5.conv1.conv.1.bias", "stg2_low_band_net.0.enc5.conv1.conv.1.running_mean", "stg2_low_band_net.0.enc5.conv1.conv.1.running_var", "stg2_low_band_net.0.enc5.conv1.conv.1.num_batches_tracked", "stg2_low_band_net.0.enc5.conv2.conv.0.weight", "stg2_low_band_net.0.enc5.conv2.conv.1.weight", "stg2_low_band_net.0.enc5.conv2.conv.1.bias", "stg2_low_band_net.0.enc5.conv2.conv.1.running_mean", "stg2_low_band_net.0.enc5.conv2.conv.1.running_var", "stg2_low_band_net.0.enc5.conv2.conv.1.num_batches_tracked", "stg2_low_band_net.0.aspp.conv1.1.conv.0.weight", "stg2_low_band_net.0.aspp.conv1.1.conv.1.weight", "stg2_low_band_net.0.aspp.conv1.1.conv.1.bias", "stg2_low_band_net.0.aspp.conv1.1.conv.1.running_mean", "stg2_low_band_net.0.aspp.conv1.1.conv.1.running_var", "stg2_low_band_net.0.aspp.conv1.1.conv.1.num_batches_tracked", "stg2_low_band_net.0.aspp.conv2.conv.0.weight", "stg2_low_band_net.0.aspp.conv2.conv.1.weight", "stg2_low_band_net.0.aspp.conv2.conv.1.bias", "stg2_low_band_net.0.aspp.conv2.conv.1.running_mean", "stg2_low_band_net.0.aspp.conv2.conv.1.running_var", "stg2_low_band_net.0.aspp.conv2.conv.1.num_batches_tracked", "stg2_low_band_net.0.aspp.conv3.conv.0.weight", "stg2_low_band_net.0.aspp.conv3.conv.1.weight", "stg2_low_band_net.0.aspp.conv3.conv.1.bias", "stg2_low_band_net.0.aspp.conv3.conv.1.running_mean", "stg2_low_band_net.0.aspp.conv3.conv.1.running_var", "stg2_low_band_net.0.aspp.conv3.conv.1.num_batches_tracked", "stg2_low_band_net.0.aspp.conv4.conv.0.weight", "stg2_low_band_net.0.aspp.conv4.conv.1.weight", "stg2_low_band_net.0.aspp.conv4.conv.1.bias", "stg2_low_band_net.0.aspp.conv4.conv.1.running_mean", "stg2_low_band_net.0.aspp.conv4.conv.1.running_var", "stg2_low_band_net.0.aspp.conv4.conv.1.num_batches_tracked", "stg2_low_band_net.0.aspp.conv5.conv.0.weight", "stg2_low_band_net.0.aspp.conv5.conv.1.weight", "stg2_low_band_net.0.aspp.conv5.conv.1.bias", "stg2_low_band_net.0.aspp.conv5.conv.1.running_mean", "stg2_low_band_net.0.aspp.conv5.conv.1.running_var", "stg2_low_band_net.0.aspp.conv5.conv.1.num_batches_tracked", "stg2_low_band_net.0.aspp.bottleneck.conv.0.weight", "stg2_low_band_net.0.aspp.bottleneck.conv.1.weight", "stg2_low_band_net.0.aspp.bottleneck.conv.1.bias", "stg2_low_band_net.0.aspp.bottleneck.conv.1.running_mean", "stg2_low_band_net.0.aspp.bottleneck.conv.1.running_var", "stg2_low_band_net.0.aspp.bottleneck.conv.1.num_batches_tracked", "stg2_low_band_net.0.dec4.conv1.conv.0.weight", "stg2_low_band_net.0.dec4.conv1.conv.1.weight", "stg2_low_band_net.0.dec4.conv1.conv.1.bias", "stg2_low_band_net.0.dec4.conv1.conv.1.running_mean", "stg2_low_band_net.0.dec4.conv1.conv.1.running_var", "stg2_low_band_net.0.dec4.conv1.conv.1.num_batches_tracked", "stg2_low_band_net.0.dec3.conv1.conv.0.weight", "stg2_low_band_net.0.dec3.conv1.conv.1.weight", "stg2_low_band_net.0.dec3.conv1.conv.1.bias", "stg2_low_band_net.0.dec3.conv1.conv.1.running_mean", "stg2_low_band_net.0.dec3.conv1.conv.1.running_var", "stg2_low_band_net.0.dec3.conv1.conv.1.num_batches_tracked", "stg2_low_band_net.0.dec2.conv1.conv.0.weight", "stg2_low_band_net.0.dec2.conv1.conv.1.weight", "stg2_low_band_net.0.dec2.conv1.conv.1.bias", "stg2_low_band_net.0.dec2.conv1.conv.1.running_mean", "stg2_low_band_net.0.dec2.conv1.conv.1.running_var", "stg2_low_band_net.0.dec2.conv1.conv.1.num_batches_tracked", "stg2_low_band_net.0.lstm_dec2.conv.conv.0.weight", "stg2_low_band_net.0.lstm_dec2.conv.conv.1.weight", "stg2_low_band_net.0.lstm_dec2.conv.conv.1.bias", "stg2_low_band_net.0.lstm_dec2.conv.conv.1.running_mean", "stg2_low_band_net.0.lstm_dec2.conv.conv.1.running_var", "stg2_low_band_net.0.lstm_dec2.conv.conv.1.num_batches_tracked", "stg2_low_band_net.0.lstm_dec2.lstm.weight_ih_l0", "stg2_low_band_net.0.lstm_dec2.lstm.weight_hh_l0", "stg2_low_band_net.0.lstm_dec2.lstm.bias_ih_l0", "stg2_low_band_net.0.lstm_dec2.lstm.bias_hh_l0", "stg2_low_band_net.0.lstm_dec2.lstm.weight_ih_l0_reverse", "stg2_low_band_net.0.lstm_dec2.lstm.weight_hh_l0_reverse", "stg2_low_band_net.0.lstm_dec2.lstm.bias_ih_l0_reverse", "stg2_low_band_net.0.lstm_dec2.lstm.bias_hh_l0_reverse", "stg2_low_band_net.0.lstm_dec2.dense.0.weight", "stg2_low_band_net.0.lstm_dec2.dense.0.bias", "stg2_low_band_net.0.lstm_dec2.dense.1.weight", "stg2_low_band_net.0.lstm_dec2.dense.1.bias", "stg2_low_band_net.0.lstm_dec2.dense.1.running_mean", "stg2_low_band_net.0.lstm_dec2.dense.1.running_var", "stg2_low_band_net.0.lstm_dec2.dense.1.num_batches_tracked", "stg2_low_band_net.0.dec1.conv1.conv.0.weight", "stg2_low_band_net.0.dec1.conv1.conv.1.weight", "stg2_low_band_net.0.dec1.conv1.conv.1.bias", "stg2_low_band_net.0.dec1.conv1.conv.1.running_mean", "stg2_low_band_net.0.dec1.conv1.conv.1.running_var", "stg2_low_band_net.0.dec1.conv1.conv.1.num_batches_tracked", "stg2_low_band_net.1.conv.0.weight", "stg2_low_band_net.1.conv.1.weight", "stg2_low_band_net.1.conv.1.bias", "stg2_low_band_net.1.conv.1.running_mean", "stg2_low_band_net.1.conv.1.running_var", "stg2_low_band_net.1.conv.1.num_batches_tracked", "stg2_high_band_net.enc1.conv.0.weight", "stg2_high_band_net.enc1.conv.1.weight", "stg2_high_band_net.enc1.conv.1.bias", "stg2_high_band_net.enc1.conv.1.running_mean", "stg2_high_band_net.enc1.conv.1.running_var", "stg2_high_band_net.enc1.conv.1.num_batches_tracked", "stg2_high_band_net.enc2.conv1.conv.0.weight", "stg2_high_band_net.enc2.conv1.conv.1.weight", "stg2_high_band_net.enc2.conv1.conv.1.bias", "stg2_high_band_net.enc2.conv1.conv.1.running_mean", "stg2_high_band_net.enc2.conv1.conv.1.running_var", "stg2_high_band_net.enc2.conv1.conv.1.num_batches_tracked", "stg2_high_band_net.enc2.conv2.conv.0.weight", "stg2_high_band_net.enc2.conv2.conv.1.weight", "stg2_high_band_net.enc2.conv2.conv.1.bias", "stg2_high_band_net.enc2.conv2.conv.1.running_mean", "stg2_high_band_net.enc2.conv2.conv.1.running_var", "stg2_high_band_net.enc2.conv2.conv.1.num_batches_tracked", "stg2_high_band_net.enc3.conv1.conv.0.weight", "stg2_high_band_net.enc3.conv1.conv.1.weight", "stg2_high_band_net.enc3.conv1.conv.1.bias", "stg2_high_band_net.enc3.conv1.conv.1.running_mean", "stg2_high_band_net.enc3.conv1.conv.1.running_var", "stg2_high_band_net.enc3.conv1.conv.1.num_batches_tracked", "stg2_high_band_net.enc3.conv2.conv.0.weight", "stg2_high_band_net.enc3.conv2.conv.1.weight", "stg2_high_band_net.enc3.conv2.conv.1.bias", "stg2_high_band_net.enc3.conv2.conv.1.running_mean", "stg2_high_band_net.enc3.conv2.conv.1.running_var", "stg2_high_band_net.enc3.conv2.conv.1.num_batches_tracked", "stg2_high_band_net.enc4.conv1.conv.0.weight", "stg2_high_band_net.enc4.conv1.conv.1.weight", "stg2_high_band_net.enc4.conv1.conv.1.bias", "stg2_high_band_net.enc4.conv1.conv.1.running_mean", "stg2_high_band_net.enc4.conv1.conv.1.running_var", "stg2_high_band_net.enc4.conv1.conv.1.num_batches_tracked", "stg2_high_band_net.enc4.conv2.conv.0.weight", "stg2_high_band_net.enc4.conv2.conv.1.weight", "stg2_high_band_net.enc4.conv2.conv.1.bias", "stg2_high_band_net.enc4.conv2.conv.1.running_mean", "stg2_high_band_net.enc4.conv2.conv.1.running_var", "stg2_high_band_net.enc4.conv2.conv.1.num_batches_tracked", "stg2_high_band_net.enc5.conv1.conv.0.weight", "stg2_high_band_net.enc5.conv1.conv.1.weight", "stg2_high_band_net.enc5.conv1.conv.1.bias", "stg2_high_band_net.enc5.conv1.conv.1.running_mean", "stg2_high_band_net.enc5.conv1.conv.1.running_var", "stg2_high_band_net.enc5.conv1.conv.1.num_batches_tracked", "stg2_high_band_net.enc5.conv2.conv.0.weight", "stg2_high_band_net.enc5.conv2.conv.1.weight", "stg2_high_band_net.enc5.conv2.conv.1.bias", "stg2_high_band_net.enc5.conv2.conv.1.running_mean", "stg2_high_band_net.enc5.conv2.conv.1.running_var", "stg2_high_band_net.enc5.conv2.conv.1.num_batches_tracked", "stg2_high_band_net.aspp.conv1.1.conv.0.weight", "stg2_high_band_net.aspp.conv1.1.conv.1.weight", "stg2_high_band_net.aspp.conv1.1.conv.1.bias", "stg2_high_band_net.aspp.conv1.1.conv.1.running_mean", "stg2_high_band_net.aspp.conv1.1.conv.1.running_var", "stg2_high_band_net.aspp.conv1.1.conv.1.num_batches_tracked", "stg2_high_band_net.aspp.conv2.conv.0.weight", "stg2_high_band_net.aspp.conv2.conv.1.weight", "stg2_high_band_net.aspp.conv2.conv.1.bias", "stg2_high_band_net.aspp.conv2.conv.1.running_mean", "stg2_high_band_net.aspp.conv2.conv.1.running_var", "stg2_high_band_net.aspp.conv2.conv.1.num_batches_tracked", "stg2_high_band_net.aspp.conv3.conv.0.weight", "stg2_high_band_net.aspp.conv3.conv.1.weight", "stg2_high_band_net.aspp.conv3.conv.1.bias", "stg2_high_band_net.aspp.conv3.conv.1.running_mean", "stg2_high_band_net.aspp.conv3.conv.1.running_var", "stg2_high_band_net.aspp.conv3.conv.1.num_batches_tracked", "stg2_high_band_net.aspp.conv4.conv.0.weight", "stg2_high_band_net.aspp.conv4.conv.1.weight", "stg2_high_band_net.aspp.conv4.conv.1.bias", "stg2_high_band_net.aspp.conv4.conv.1.running_mean", "stg2_high_band_net.aspp.conv4.conv.1.running_var", "stg2_high_band_net.aspp.conv4.conv.1.num_batches_tracked", "stg2_high_band_net.aspp.conv5.conv.0.weight", "stg2_high_band_net.aspp.conv5.conv.1.weight", "stg2_high_band_net.aspp.conv5.conv.1.bias", "stg2_high_band_net.aspp.conv5.conv.1.running_mean", "stg2_high_band_net.aspp.conv5.conv.1.running_var", "stg2_high_band_net.aspp.conv5.conv.1.num_batches_tracked", "stg2_high_band_net.aspp.bottleneck.conv.0.weight", "stg2_high_band_net.aspp.bottleneck.conv.1.weight", "stg2_high_band_net.aspp.bottleneck.conv.1.bias", "stg2_high_band_net.aspp.bottleneck.conv.1.running_mean", "stg2_high_band_net.aspp.bottleneck.conv.1.running_var", "stg2_high_band_net.aspp.bottleneck.conv.1.num_batches_tracked", "stg2_high_band_net.dec4.conv1.conv.0.weight", "stg2_high_band_net.dec4.conv1.conv.1.weight", "stg2_high_band_net.dec4.conv1.conv.1.bias", "stg2_high_band_net.dec4.conv1.conv.1.running_mean", "stg2_high_band_net.dec4.conv1.conv.1.running_var", "stg2_high_band_net.dec4.conv1.conv.1.num_batches_tracked", "stg2_high_band_net.dec3.conv1.conv.0.weight", "stg2_high_band_net.dec3.conv1.conv.1.weight", "stg2_high_band_net.dec3.conv1.conv.1.bias", "stg2_high_band_net.dec3.conv1.conv.1.running_mean", "stg2_high_band_net.dec3.conv1.conv.1.running_var", "stg2_high_band_net.dec3.conv1.conv.1.num_batches_tracked", "stg2_high_band_net.dec2.conv1.conv.0.weight", "stg2_high_band_net.dec2.conv1.conv.1.weight", "stg2_high_band_net.dec2.conv1.conv.1.bias", "stg2_high_band_net.dec2.conv1.conv.1.running_mean", "stg2_high_band_net.dec2.conv1.conv.1.running_var", "stg2_high_band_net.dec2.conv1.conv.1.num_batches_tracked", "stg2_high_band_net.lstm_dec2.conv.conv.0.weight", "stg2_high_band_net.lstm_dec2.conv.conv.1.weight", "stg2_high_band_net.lstm_dec2.conv.conv.1.bias", "stg2_high_band_net.lstm_dec2.conv.conv.1.running_mean", "stg2_high_band_net.lstm_dec2.conv.conv.1.running_var", "stg2_high_band_net.lstm_dec2.conv.conv.1.num_batches_tracked", "stg2_high_band_net.lstm_dec2.lstm.weight_ih_l0", "stg2_high_band_net.lstm_dec2.lstm.weight_hh_l0", "stg2_high_band_net.lstm_dec2.lstm.bias_ih_l0", "stg2_high_band_net.lstm_dec2.lstm.bias_hh_l0", "stg2_high_band_net.lstm_dec2.lstm.weight_ih_l0_reverse", "stg2_high_band_net.lstm_dec2.lstm.weight_hh_l0_reverse", "stg2_high_band_net.lstm_dec2.lstm.bias_ih_l0_reverse", "stg2_high_band_net.lstm_dec2.lstm.bias_hh_l0_reverse", "stg2_high_band_net.lstm_dec2.dense.0.weight", "stg2_high_band_net.lstm_dec2.dense.0.bias", "stg2_high_band_net.lstm_dec2.dense.1.weight", "stg2_high_band_net.lstm_dec2.dense.1.bias", "stg2_high_band_net.lstm_dec2.dense.1.running_mean", "stg2_high_band_net.lstm_dec2.dense.1.running_var", "stg2_high_band_net.lstm_dec2.dense.1.num_batches_tracked", "stg2_high_band_net.dec1.conv1.conv.0.weight", "stg2_high_band_net.dec1.conv1.conv.1.weight", "stg2_high_band_net.dec1.conv1.conv.1.bias", "stg2_high_band_net.dec1.conv1.conv.1.running_mean", "stg2_high_band_net.dec1.conv1.conv.1.running_var", "stg2_high_band_net.dec1.conv1.conv.1.num_batches_tracked", "aux_out.weight", "stg1_low_band_net.0.enc1.conv.0.weight", "stg1_low_band_net.0.enc1.conv.1.weight", "stg1_low_band_net.0.enc1.conv.1.bias", "stg1_low_band_net.0.enc1.conv.1.running_mean", "stg1_low_band_net.0.enc1.conv.1.running_var", "stg1_low_band_net.0.enc1.conv.1.num_batches_tracked", "stg1_low_band_net.0.enc2.conv1.conv.0.weight", "stg1_low_band_net.0.enc2.conv1.conv.1.weight", "stg1_low_band_net.0.enc2.conv1.conv.1.bias", "stg1_low_band_net.0.enc2.conv1.conv.1.running_mean", "stg1_low_band_net.0.enc2.conv1.conv.1.running_var", "stg1_low_band_net.0.enc2.conv1.conv.1.num_batches_tracked", "stg1_low_band_net.0.enc2.conv2.conv.0.weight", "stg1_low_band_net.0.enc2.conv2.conv.1.weight", "stg1_low_band_net.0.enc2.conv2.conv.1.bias", "stg1_low_band_net.0.enc2.conv2.conv.1.running_mean", "stg1_low_band_net.0.enc2.conv2.conv.1.running_var", "stg1_low_band_net.0.enc2.conv2.conv.1.num_batches_tracked", "stg1_low_band_net.0.enc3.conv1.conv.0.weight", "stg1_low_band_net.0.enc3.conv1.conv.1.weight", "stg1_low_band_net.0.enc3.conv1.conv.1.bias", "stg1_low_band_net.0.enc3.conv1.conv.1.running_mean", "stg1_low_band_net.0.enc3.conv1.conv.1.running_var", "stg1_low_band_net.0.enc3.conv1.conv.1.num_batches_tracked", "stg1_low_band_net.0.enc3.conv2.conv.0.weight", "stg1_low_band_net.0.enc3.conv2.conv.1.weight", "stg1_low_band_net.0.enc3.conv2.conv.1.bias", "stg1_low_band_net.0.enc3.conv2.conv.1.running_mean", "stg1_low_band_net.0.enc3.conv2.conv.1.running_var", "stg1_low_band_net.0.enc3.conv2.conv.1.num_batches_tracked", "stg1_low_band_net.0.enc4.conv1.conv.0.weight", "stg1_low_band_net.0.enc4.conv1.conv.1.weight", "stg1_low_band_net.0.enc4.conv1.conv.1.bias", "stg1_low_band_net.0.enc4.conv1.conv.1.running_mean", "stg1_low_band_net.0.enc4.conv1.conv.1.running_var", "stg1_low_band_net.0.enc4.conv1.conv.1.num_batches_tracked", "stg1_low_band_net.0.enc4.conv2.conv.0.weight", "stg1_low_band_net.0.enc4.conv2.conv.1.weight", "stg1_low_band_net.0.enc4.conv2.conv.1.bias", "stg1_low_band_net.0.enc4.conv2.conv.1.running_mean", "stg1_low_band_net.0.enc4.conv2.conv.1.running_var", "stg1_low_band_net.0.enc4.conv2.conv.1.num_batches_tracked", "stg1_low_band_net.0.enc5.conv1.conv.0.weight", "stg1_low_band_net.0.enc5.conv1.conv.1.weight", "stg1_low_band_net.0.enc5.conv1.conv.1.bias", "stg1_low_band_net.0.enc5.conv1.conv.1.running_mean", "stg1_low_band_net.0.enc5.conv1.conv.1.running_var", "stg1_low_band_net.0.enc5.conv1.conv.1.num_batches_tracked", "stg1_low_band_net.0.enc5.conv2.conv.0.weight", "stg1_low_band_net.0.enc5.conv2.conv.1.weight", "stg1_low_band_net.0.enc5.conv2.conv.1.bias", "stg1_low_band_net.0.enc5.conv2.conv.1.running_mean", "stg1_low_band_net.0.enc5.conv2.conv.1.running_var", "stg1_low_band_net.0.enc5.conv2.conv.1.num_batches_tracked", "stg1_low_band_net.0.aspp.conv1.1.conv.0.weight", "stg1_low_band_net.0.aspp.conv1.1.conv.1.weight", "stg1_low_band_net.0.aspp.conv1.1.conv.1.bias", "stg1_low_band_net.0.aspp.conv1.1.conv.1.running_mean", "stg1_low_band_net.0.aspp.conv1.1.conv.1.running_var", "stg1_low_band_net.0.aspp.conv1.1.conv.1.num_batches_tracked", "stg1_low_band_net.0.aspp.conv2.conv.0.weight", "stg1_low_band_net.0.aspp.conv2.conv.1.weight", "stg1_low_band_net.0.aspp.conv2.conv.1.bias", "stg1_low_band_net.0.aspp.conv2.conv.1.running_mean", "stg1_low_band_net.0.aspp.conv2.conv.1.running_var", "stg1_low_band_net.0.aspp.conv2.conv.1.num_batches_tracked", "stg1_low_band_net.0.aspp.conv3.conv.0.weight", "stg1_low_band_net.0.aspp.conv3.conv.1.weight", "stg1_low_band_net.0.aspp.conv3.conv.1.bias", "stg1_low_band_net.0.aspp.conv3.conv.1.running_mean", "stg1_low_band_net.0.aspp.conv3.conv.1.running_var", "stg1_low_band_net.0.aspp.conv3.conv.1.num_batches_tracked", "stg1_low_band_net.0.aspp.conv4.conv.0.weight", "stg1_low_band_net.0.aspp.conv4.conv.1.weight", "stg1_low_band_net.0.aspp.conv4.conv.1.bias", "stg1_low_band_net.0.aspp.conv4.conv.1.running_mean", "stg1_low_band_net.0.aspp.conv4.conv.1.running_var", "stg1_low_band_net.0.aspp.conv4.conv.1.num_batches_tracked", "stg1_low_band_net.0.aspp.conv5.conv.0.weight", "stg1_low_band_net.0.aspp.conv5.conv.1.weight", "stg1_low_band_net.0.aspp.conv5.conv.1.bias", "stg1_low_band_net.0.aspp.conv5.conv.1.running_mean", "stg1_low_band_net.0.aspp.conv5.conv.1.running_var", "stg1_low_band_net.0.aspp.conv5.conv.1.num_batches_tracked", "stg1_low_band_net.0.aspp.bottleneck.conv.0.weight", "stg1_low_band_net.0.aspp.bottleneck.conv.1.weight", "stg1_low_band_net.0.aspp.bottleneck.conv.1.bias", "stg1_low_band_net.0.aspp.bottleneck.conv.1.running_mean", "stg1_low_band_net.0.aspp.bottleneck.conv.1.running_var", "stg1_low_band_net.0.aspp.bottleneck.conv.1.num_batches_tracked", "stg1_low_band_net.0.dec4.conv1.conv.0.weight", "stg1_low_band_net.0.dec4.conv1.conv.1.weight", "stg1_low_band_net.0.dec4.conv1.conv.1.bias", "stg1_low_band_net.0.dec4.conv1.conv.1.running_mean", "stg1_low_band_net.0.dec4.conv1.conv.1.running_var", "stg1_low_band_net.0.dec4.conv1.conv.1.num_batches_tracked", "stg1_low_band_net.0.dec3.conv1.conv.0.weight", "stg1_low_band_net.0.dec3.conv1.conv.1.weight", "stg1_low_band_net.0.dec3.conv1.conv.1.bias", "stg1_low_band_net.0.dec3.conv1.conv.1.running_mean", "stg1_low_band_net.0.dec3.conv1.conv.1.running_var", "stg1_low_band_net.0.dec3.conv1.conv.1.num_batches_tracked", "stg1_low_band_net.0.dec2.conv1.conv.0.weight", "stg1_low_band_net.0.dec2.conv1.conv.1.weight", "stg1_low_band_net.0.dec2.conv1.conv.1.bias", "stg1_low_band_net.0.dec2.conv1.conv.1.running_mean", "stg1_low_band_net.0.dec2.conv1.conv.1.running_var", "stg1_low_band_net.0.dec2.conv1.conv.1.num_batches_tracked", "stg1_low_band_net.0.lstm_dec2.conv.conv.0.weight", "stg1_low_band_net.0.lstm_dec2.conv.conv.1.weight", "stg1_low_band_net.0.lstm_dec2.conv.conv.1.bias", "stg1_low_band_net.0.lstm_dec2.conv.conv.1.running_mean", "stg1_low_band_net.0.lstm_dec2.conv.conv.1.running_var", "stg1_low_band_net.0.lstm_dec2.conv.conv.1.num_batches_tracked", "stg1_low_band_net.0.lstm_dec2.lstm.weight_ih_l0", "stg1_low_band_net.0.lstm_dec2.lstm.weight_hh_l0", "stg1_low_band_net.0.lstm_dec2.lstm.bias_ih_l0", "stg1_low_band_net.0.lstm_dec2.lstm.bias_hh_l0", "stg1_low_band_net.0.lstm_dec2.lstm.weight_ih_l0_reverse", "stg1_low_band_net.0.lstm_dec2.lstm.weight_hh_l0_reverse", "stg1_low_band_net.0.lstm_dec2.lstm.bias_ih_l0_reverse", "stg1_low_band_net.0.lstm_dec2.lstm.bias_hh_l0_reverse", "stg1_low_band_net.0.lstm_dec2.dense.0.weight", "stg1_low_band_net.0.lstm_dec2.dense.0.bias", "stg1_low_band_net.0.lstm_dec2.dense.1.weight", "stg1_low_band_net.0.lstm_dec2.dense.1.bias", "stg1_low_band_net.0.lstm_dec2.dense.1.running_mean", "stg1_low_band_net.0.lstm_dec2.dense.1.running_var", "stg1_low_band_net.0.lstm_dec2.dense.1.num_batches_tracked", "stg1_low_band_net.0.dec1.conv1.conv.0.weight", "stg1_low_band_net.0.dec1.conv1.conv.1.weight", "stg1_low_band_net.0.dec1.conv1.conv.1.bias", "stg1_low_band_net.0.dec1.conv1.conv.1.running_mean", "stg1_low_band_net.0.dec1.conv1.conv.1.running_var", "stg1_low_band_net.0.dec1.conv1.conv.1.num_batches_tracked", "stg1_low_band_net.1.conv.0.weight", "stg1_low_band_net.1.conv.1.weight", "stg1_low_band_net.1.conv.1.bias", "stg1_low_band_net.1.conv.1.running_mean", "stg1_low_band_net.1.conv.1.running_var", "stg1_low_band_net.1.conv.1.num_batches_tracked", "stg1_high_band_net.enc5.conv1.conv.0.weight", "stg1_high_band_net.enc5.conv1.conv.1.weight", "stg1_high_band_net.enc5.conv1.conv.1.bias", "stg1_high_band_net.enc5.conv1.conv.1.running_mean", "stg1_high_band_net.enc5.conv1.conv.1.running_var", "stg1_high_band_net.enc5.conv1.conv.1.num_batches_tracked", "stg1_high_band_net.enc5.conv2.conv.0.weight", "stg1_high_band_net.enc5.conv2.conv.1.weight", "stg1_high_band_net.enc5.conv2.conv.1.bias", "stg1_high_band_net.enc5.conv2.conv.1.running_mean", "stg1_high_band_net.enc5.conv2.conv.1.running_var", "stg1_high_band_net.enc5.conv2.conv.1.num_batches_tracked", "stg1_high_band_net.lstm_dec2.conv.conv.0.weight", "stg1_high_band_net.lstm_dec2.conv.conv.1.weight", "stg1_high_band_net.lstm_dec2.conv.conv.1.bias", "stg1_high_band_net.lstm_dec2.conv.conv.1.running_mean", "stg1_high_band_net.lstm_dec2.conv.conv.1.running_var", "stg1_high_band_net.lstm_dec2.conv.conv.1.num_batches_tracked", "stg1_high_band_net.lstm_dec2.lstm.weight_ih_l0", "stg1_high_band_net.lstm_dec2.lstm.weight_hh_l0", "stg1_high_band_net.lstm_dec2.lstm.bias_ih_l0", "stg1_high_band_net.lstm_dec2.lstm.bias_hh_l0", "stg1_high_band_net.lstm_dec2.lstm.weight_ih_l0_reverse", "stg1_high_band_net.lstm_dec2.lstm.weight_hh_l0_reverse", "stg1_high_band_net.lstm_dec2.lstm.bias_ih_l0_reverse", "stg1_high_band_net.lstm_dec2.lstm.bias_hh_l0_reverse", "stg1_high_band_net.lstm_dec2.dense.0.weight", "stg1_high_band_net.lstm_dec2.dense.0.bias", "stg1_high_band_net.lstm_dec2.dense.1.weight", "stg1_high_band_net.lstm_dec2.dense.1.bias", "stg1_high_band_net.lstm_dec2.dense.1.running_mean", "stg1_high_band_net.lstm_dec2.dense.1.running_var", "stg1_high_band_net.lstm_dec2.dense.1.num_batches_tracked", "stg1_high_band_net.enc1.conv.0.weight", "stg1_high_band_net.enc1.conv.1.weight", "stg1_high_band_net.enc1.conv.1.bias", "stg1_high_band_net.enc1.conv.1.running_mean", "stg1_high_band_net.enc1.conv.1.running_var", "stg1_high_band_net.enc1.conv.1.num_batches_tracked", "stg1_high_band_net.aspp.conv3.conv.1.bias", "stg1_high_band_net.aspp.conv3.conv.1.running_mean", "stg1_high_band_net.aspp.conv3.conv.1.running_var", "stg1_high_band_net.aspp.conv3.conv.1.num_batches_tracked", "stg1_high_band_net.aspp.conv4.conv.1.bias", "stg1_high_band_net.aspp.conv4.conv.1.running_mean", "stg1_high_band_net.aspp.conv4.conv.1.running_var", "stg1_high_band_net.aspp.conv4.conv.1.num_batches_tracked", "stg1_high_band_net.aspp.conv5.conv.1.bias", "stg1_high_band_net.aspp.conv5.conv.1.running_mean", "stg1_high_band_net.aspp.conv5.conv.1.running_var", "stg1_high_band_net.aspp.conv5.conv.1.num_batches_tracked", "stg1_high_band_net.aspp.bottleneck.conv.0.weight", "stg1_high_band_net.aspp.bottleneck.conv.1.weight", "stg1_high_band_net.aspp.bottleneck.conv.1.bias", "stg1_high_band_net.aspp.bottleneck.conv.1.running_mean", "stg1_high_band_net.aspp.bottleneck.conv.1.running_var", "stg1_high_band_net.aspp.bottleneck.conv.1.num_batches_tracked", "stg1_high_band_net.dec4.conv1.conv.0.weight", "stg1_high_band_net.dec4.conv1.conv.1.weight", "stg1_high_band_net.dec4.conv1.conv.1.bias", "stg1_high_band_net.dec4.conv1.conv.1.running_mean", "stg1_high_band_net.dec4.conv1.conv.1.running_var", "stg1_high_band_net.dec4.conv1.conv.1.num_batches_tracked", "stg1_high_band_net.dec3.conv1.conv.0.weight", "stg1_high_band_net.dec3.conv1.conv.1.weight", "stg1_high_band_net.dec3.conv1.conv.1.bias", "stg1_high_band_net.dec3.conv1.conv.1.running_mean", "stg1_high_band_net.dec3.conv1.conv.1.running_var", "stg1_high_band_net.dec3.conv1.conv.1.num_batches_tracked", "stg1_high_band_net.dec2.conv1.conv.0.weight", "stg1_high_band_net.dec2.conv1.conv.1.weight", "stg1_high_band_net.dec2.conv1.conv.1.bias", "stg1_high_band_net.dec2.conv1.conv.1.running_mean", "stg1_high_band_net.dec2.conv1.conv.1.running_var", "stg1_high_band_net.dec2.conv1.conv.1.num_batches_tracked", "stg1_high_band_net.dec1.conv1.conv.0.weight", "stg1_high_band_net.dec1.conv1.conv.1.weight", "stg1_high_band_net.dec1.conv1.conv.1.bias", "stg1_high_band_net.dec1.conv1.conv.1.running_mean", "stg1_high_band_net.dec1.conv1.conv.1.running_var", "stg1_high_band_net.dec1.conv1.conv.1.num_batches_tracked", "stg3_full_band_net.enc5.conv1.conv.0.weight", "stg3_full_band_net.enc5.conv1.conv.1.weight", "stg3_full_band_net.enc5.conv1.conv.1.bias", "stg3_full_band_net.enc5.conv1.conv.1.running_mean", "stg3_full_band_net.enc5.conv1.conv.1.running_var", "stg3_full_band_net.enc5.conv1.conv.1.num_batches_tracked", "stg3_full_band_net.enc5.conv2.conv.0.weight", "stg3_full_band_net.enc5.conv2.conv.1.weight", "stg3_full_band_net.enc5.conv2.conv.1.bias", "stg3_full_band_net.enc5.conv2.conv.1.running_mean", "stg3_full_band_net.enc5.conv2.conv.1.running_var", "stg3_full_band_net.enc5.conv2.conv.1.num_batches_tracked", "stg3_full_band_net.lstm_dec2.conv.conv.0.weight", "stg3_full_band_net.lstm_dec2.conv.conv.1.weight", "stg3_full_band_net.lstm_dec2.conv.conv.1.bias", "stg3_full_band_net.lstm_dec2.conv.conv.1.running_mean", "stg3_full_band_net.lstm_dec2.conv.conv.1.running_var", "stg3_full_band_net.lstm_dec2.conv.conv.1.num_batches_tracked", "stg3_full_band_net.lstm_dec2.lstm.weight_ih_l0", "stg3_full_band_net.lstm_dec2.lstm.weight_hh_l0", "stg3_full_band_net.lstm_dec2.lstm.bias_ih_l0", "stg3_full_band_net.lstm_dec2.lstm.bias_hh_l0", "stg3_full_band_net.lstm_dec2.lstm.weight_ih_l0_reverse", "stg3_full_band_net.lstm_dec2.lstm.weight_hh_l0_reverse", "stg3_full_band_net.lstm_dec2.lstm.bias_ih_l0_reverse", "stg3_full_band_net.lstm_dec2.lstm.bias_hh_l0_reverse", "stg3_full_band_net.lstm_dec2.dense.0.weight", "stg3_full_band_net.lstm_dec2.dense.0.bias", "stg3_full_band_net.lstm_dec2.dense.1.weight", "stg3_full_band_net.lstm_dec2.dense.1.bias", "stg3_full_band_net.lstm_dec2.dense.1.running_mean", "stg3_full_band_net.lstm_dec2.dense.1.running_var", "stg3_full_band_net.lstm_dec2.dense.1.num_batches_tracked", "stg3_full_band_net.enc1.conv.0.weight", "stg3_full_band_net.enc1.conv.1.weight", "stg3_full_band_net.enc1.conv.1.bias", "stg3_full_band_net.enc1.conv.1.running_mean", "stg3_full_band_net.enc1.conv.1.running_var", "stg3_full_band_net.enc1.conv.1.num_batches_tracked", "stg3_full_band_net.aspp.conv3.conv.1.bias", "stg3_full_band_net.aspp.conv3.conv.1.running_mean", "stg3_full_band_net.aspp.conv3.conv.1.running_var", "stg3_full_band_net.aspp.conv3.conv.1.num_batches_tracked", "stg3_full_band_net.aspp.conv4.conv.1.bias", "stg3_full_band_net.aspp.conv4.conv.1.running_mean", "stg3_full_band_net.aspp.conv4.conv.1.running_var", "stg3_full_band_net.aspp.conv4.conv.1.num_batches_tracked", "stg3_full_band_net.aspp.conv5.conv.1.bias", "stg3_full_band_net.aspp.conv5.conv.1.running_mean", "stg3_full_band_net.aspp.conv5.conv.1.running_var", "stg3_full_band_net.aspp.conv5.conv.1.num_batches_tracked", "stg3_full_band_net.aspp.bottleneck.conv.0.weight", "stg3_full_band_net.aspp.bottleneck.conv.1.weight", "stg3_full_band_net.aspp.bottleneck.conv.1.bias", "stg3_full_band_net.aspp.bottleneck.conv.1.running_mean", "stg3_full_band_net.aspp.bottleneck.conv.1.running_var", "stg3_full_band_net.aspp.bottleneck.conv.1.num_batches_tracked", "stg3_full_band_net.dec4.conv1.conv.0.weight", "stg3_full_band_net.dec4.conv1.conv.1.weight", "stg3_full_band_net.dec4.conv1.conv.1.bias", "stg3_full_band_net.dec4.conv1.conv.1.running_mean", "stg3_full_band_net.dec4.conv1.conv.1.running_var", "stg3_full_band_net.dec4.conv1.conv.1.num_batches_tracked", "stg3_full_band_net.dec3.conv1.conv.0.weight", "stg3_full_band_net.dec3.conv1.conv.1.weight", "stg3_full_band_net.dec3.conv1.conv.1.bias", "stg3_full_band_net.dec3.conv1.conv.1.running_mean", "stg3_full_band_net.dec3.conv1.conv.1.running_var", "stg3_full_band_net.dec3.conv1.conv.1.num_batches_tracked", "stg3_full_band_net.dec2.conv1.conv.0.weight", "stg3_full_band_net.dec2.conv1.conv.1.weight", "stg3_full_band_net.dec2.conv1.conv.1.bias", "stg3_full_band_net.dec2.conv1.conv.1.running_mean", "stg3_full_band_net.dec2.conv1.conv.1.running_var", "stg3_full_band_net.dec2.conv1.conv.1.num_batches_tracked", "stg3_full_band_net.dec1.conv1.conv.0.weight", "stg3_full_band_net.dec1.conv1.conv.1.weight", "stg3_full_band_net.dec1.conv1.conv.1.bias", "stg3_full_band_net.dec1.conv1.conv.1.running_mean", "stg3_full_band_net.dec1.conv1.conv.1.running_var", "stg3_full_band_net.dec1.conv1.conv.1.num_batches_tracked". size mismatch for stg1_high_band_net.enc2.conv1.conv.0.weight: copying a param with shape torch.Size([24, 12, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 32, 3, 3]). size mismatch for stg1_high_band_net.enc2.conv1.conv.1.weight: copying a param with shape torch.Size([24]) from checkpoint, the shape in current model is torch.Size([64]). size mismatch for stg1_high_band_net.enc2.conv1.conv.1.bias: copying a param with shape torch.Size([24]) from checkpoint, the shape in current model is torch.Size([64]). size mismatch for stg1_high_band_net.enc2.conv1.conv.1.running_mean: copying a param with shape torch.Size([24]) from checkpoint, the shape in current model is torch.Size([64]). size mismatch for stg1_high_band_net.enc2.conv1.conv.1.running_var: copying a param with shape torch.Size([24]) from checkpoint, the shape in current model is torch.Size([64]). size mismatch for stg1_high_band_net.enc2.conv2.conv.0.weight: copying a param with shape torch.Size([24, 24, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]). size mismatch for stg1_high_band_net.enc2.conv2.conv.1.weight: copying a param with shape torch.Size([24]) from checkpoint, the shape in current model is torch.Size([64]). size mismatch for stg1_high_band_net.enc2.conv2.conv.1.bias: copying a param with shape torch.Size([24]) from checkpoint, the shape in current model is torch.Size([64]). size mismatch for stg1_high_band_net.enc2.conv2.conv.1.running_mean: copying a param with shape torch.Size([24]) from checkpoint, the shape in current model is torch.Size([64]). size mismatch for stg1_high_band_net.enc2.conv2.conv.1.running_var: copying a param with shape torch.Size([24]) from checkpoint, the shape in current model is torch.Size([64]). size mismatch for stg1_high_band_net.enc3.conv1.conv.0.weight: copying a param with shape torch.Size([48, 24, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 64, 3, 3]). size mismatch for stg1_high_band_net.enc3.conv1.conv.1.weight: copying a param with shape torch.Size([48]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg1_high_band_net.enc3.conv1.conv.1.bias: copying a param with shape torch.Size([48]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg1_high_band_net.enc3.conv1.conv.1.running_mean: copying a param with shape torch.Size([48]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg1_high_band_net.enc3.conv1.conv.1.running_var: copying a param with shape torch.Size([48]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg1_high_band_net.enc3.conv2.conv.0.weight: copying a param with shape torch.Size([48, 48, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for stg1_high_band_net.enc3.conv2.conv.1.weight: copying a param with shape torch.Size([48]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg1_high_band_net.enc3.conv2.conv.1.bias: copying a param with shape torch.Size([48]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg1_high_band_net.enc3.conv2.conv.1.running_mean: copying a param with shape torch.Size([48]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg1_high_band_net.enc3.conv2.conv.1.running_var: copying a param with shape torch.Size([48]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg1_high_band_net.enc4.conv1.conv.0.weight: copying a param with shape torch.Size([72, 48, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 128, 3, 3]). size mismatch for stg1_high_band_net.enc4.conv1.conv.1.weight: copying a param with shape torch.Size([72]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.enc4.conv1.conv.1.bias: copying a param with shape torch.Size([72]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.enc4.conv1.conv.1.running_mean: copying a param with shape torch.Size([72]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.enc4.conv1.conv.1.running_var: copying a param with shape torch.Size([72]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.enc4.conv2.conv.0.weight: copying a param with shape torch.Size([72, 72, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 256, 3, 3]). size mismatch for stg1_high_band_net.enc4.conv2.conv.1.weight: copying a param with shape torch.Size([72]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.enc4.conv2.conv.1.bias: copying a param with shape torch.Size([72]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.enc4.conv2.conv.1.running_mean: copying a param with shape torch.Size([72]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.enc4.conv2.conv.1.running_var: copying a param with shape torch.Size([72]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.aspp.conv1.1.conv.0.weight: copying a param with shape torch.Size([96, 96, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 256, 1, 1]). size mismatch for stg1_high_band_net.aspp.conv1.1.conv.1.weight: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.aspp.conv1.1.conv.1.bias: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.aspp.conv1.1.conv.1.running_mean: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.aspp.conv1.1.conv.1.running_var: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.aspp.conv2.conv.0.weight: copying a param with shape torch.Size([96, 96, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 256, 1, 1]). size mismatch for stg1_high_band_net.aspp.conv2.conv.1.weight: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.aspp.conv2.conv.1.bias: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.aspp.conv2.conv.1.running_mean: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.aspp.conv2.conv.1.running_var: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg1_high_band_net.aspp.conv3.conv.0.weight: copying a param with shape torch.Size([96, 96, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 1, 3, 3]). size mismatch for stg1_high_band_net.aspp.conv3.conv.1.weight: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([256, 256, 1, 1]). size mismatch for stg1_high_band_net.aspp.conv4.conv.0.weight: copying a param with shape torch.Size([96, 96, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 1, 3, 3]). size mismatch for stg1_high_band_net.aspp.conv4.conv.1.weight: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([256, 256, 1, 1]). size mismatch for stg1_high_band_net.aspp.conv5.conv.0.weight: copying a param with shape torch.Size([96, 96, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 1, 3, 3]). size mismatch for stg1_high_band_net.aspp.conv5.conv.1.weight: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([256, 256, 1, 1]). size mismatch for stg3_full_band_net.enc2.conv1.conv.0.weight: copying a param with shape torch.Size([96, 48, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 64, 3, 3]). size mismatch for stg3_full_band_net.enc2.conv1.conv.1.weight: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg3_full_band_net.enc2.conv1.conv.1.bias: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg3_full_band_net.enc2.conv1.conv.1.running_mean: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg3_full_band_net.enc2.conv1.conv.1.running_var: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg3_full_band_net.enc2.conv2.conv.0.weight: copying a param with shape torch.Size([96, 96, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for stg3_full_band_net.enc2.conv2.conv.1.weight: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg3_full_band_net.enc2.conv2.conv.1.bias: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg3_full_band_net.enc2.conv2.conv.1.running_mean: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg3_full_band_net.enc2.conv2.conv.1.running_var: copying a param with shape torch.Size([96]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for stg3_full_band_net.enc3.conv1.conv.0.weight: copying a param with shape torch.Size([192, 96, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 128, 3, 3]). size mismatch for stg3_full_band_net.enc3.conv1.conv.1.weight: copying a param with shape torch.Size([192]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg3_full_band_net.enc3.conv1.conv.1.bias: copying a param with shape torch.Size([192]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg3_full_band_net.enc3.conv1.conv.1.running_mean: copying a param with shape torch.Size([192]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg3_full_band_net.enc3.conv1.conv.1.running_var: copying a param with shape torch.Size([192]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg3_full_band_net.enc3.conv2.conv.0.weight: copying a param with shape torch.Size([192, 192, 3, 3]) from checkpoint, the shape in current model is torch.Size([256, 256, 3, 3]). size mismatch for stg3_full_band_net.enc3.conv2.conv.1.weight: copying a param with shape torch.Size([192]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg3_full_band_net.enc3.conv2.conv.1.bias: copying a param with shape torch.Size([192]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg3_full_band_net.enc3.conv2.conv.1.running_mean: copying a param with shape torch.Size([192]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg3_full_band_net.enc3.conv2.conv.1.running_var: copying a param with shape torch.Size([192]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for stg3_full_band_net.enc4.conv1.conv.0.weight: copying a param with shape torch.Size([288, 192, 3, 3]) from checkpoint, the shape in current model is torch.Size([512, 256, 3, 3]). size mismatch for stg3_full_band_net.enc4.conv1.conv.1.weight: copying a param with shape torch.Size([288]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.enc4.conv1.conv.1.bias: copying a param with shape torch.Size([288]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.enc4.conv1.conv.1.running_mean: copying a param with shape torch.Size([288]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.enc4.conv1.conv.1.running_var: copying a param with shape torch.Size([288]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.enc4.conv2.conv.0.weight: copying a param with shape torch.Size([288, 288, 3, 3]) from checkpoint, the shape in current model is torch.Size([512, 512, 3, 3]). size mismatch for stg3_full_band_net.enc4.conv2.conv.1.weight: copying a param with shape torch.Size([288]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.enc4.conv2.conv.1.bias: copying a param with shape torch.Size([288]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.enc4.conv2.conv.1.running_mean: copying a param with shape torch.Size([288]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.enc4.conv2.conv.1.running_var: copying a param with shape torch.Size([288]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.aspp.conv1.1.conv.0.weight: copying a param with shape torch.Size([384, 384, 1, 1]) from checkpoint, the shape in current model is torch.Size([512, 512, 1, 1]). size mismatch for stg3_full_band_net.aspp.conv1.1.conv.1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.aspp.conv1.1.conv.1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.aspp.conv1.1.conv.1.running_mean: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.aspp.conv1.1.conv.1.running_var: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.aspp.conv2.conv.0.weight: copying a param with shape torch.Size([384, 384, 1, 1]) from checkpoint, the shape in current model is torch.Size([512, 512, 1, 1]). size mismatch for stg3_full_band_net.aspp.conv2.conv.1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.aspp.conv2.conv.1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.aspp.conv2.conv.1.running_mean: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.aspp.conv2.conv.1.running_var: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for stg3_full_band_net.aspp.conv3.conv.0.weight: copying a param with shape torch.Size([384, 384, 3, 3]) from checkpoint, the shape in current model is torch.Size([512, 1, 3, 3]). size mismatch for stg3_full_band_net.aspp.conv3.conv.1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([512, 512, 1, 1]). size mismatch for stg3_full_band_net.aspp.conv4.conv.0.weight: copying a param with shape torch.Size([384, 384, 3, 3]) from checkpoint, the shape in current model is torch.Size([512, 1, 3, 3]). size mismatch for stg3_full_band_net.aspp.conv4.conv.1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([512, 512, 1, 1]). size mismatch for stg3_full_band_net.aspp.conv5.conv.0.weight: copying a param with shape torch.Size([384, 384, 3, 3]) from checkpoint, the shape in current model is torch.Size([512, 1, 3, 3]). size mismatch for stg3_full_band_net.aspp.conv5.conv.1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([512, 512, 1, 1]). size mismatch for out.weight: copying a param with shape torch.Size([2, 48, 1, 1]) from checkpoint, the shape in current model is torch.Size([2, 64, 1, 1])." Traceback Error: " File "UVR.py", line 4716, in process_start File "separate.py", line 667, in seperate File "torch\nn\modules\module.py", line 1671, in load_state_dict " Error Time Stamp [2025-08-24 23:13:25] Full Application Settings: vr_model: UVR-De-Echo-Normal aggression_setting: 10 window_size: 512 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: kuielab_b_vocals chunks: Auto margin: 44100 compensate: Auto is_denoise: False is_invert_spec: False is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_gpu_conversion: True is_primary_stem_only: True is_secondary_stem_only: False is_testing_audio: False is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_create_model_folder: False mp3_bit_set: 320k save_format: WAV wav_type_set: PCM_16 help_hints_var: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems
08-25
Traceback (most recent call last): File "D:\anaconda\envs\dhrnet\lib\multiprocessing\process.py", line 315, in _bootstrap self.run() File "D:\anaconda\envs\dhrnet\lib\multiprocessing\process.py", line 108, in run self._target(*self._args, **self._kwargs) File "D:\dhrnet-multi-pose-estimation\tools\valid.py", line 97, in worker model.load_state_dict(torch.load(model_path, map_location='cpu'), strict=True) File "D:\anaconda\envs\dhrnet\lib\site-packages\torch\nn\modules\module.py", line 2041, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for DHRNet: size mismatch for iia.keypoint_center_conv.weight: copying a param with shape torch.Size([18, 480, 1, 1]) from checkpoint, the shape in current model is torch.Size([15, 480, 1, 1]). size mismatch for iia.keypoint_center_conv.bias: copying a param with shape torch.Size([18]) from checkpoint, the shape in current model is torch.Size([15]). size mismatch for gfd.heatmap_conv.weight: copying a param with shape torch.Size([17, 32, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 32, 1, 1]). size mismatch for gfd.heatmap_conv.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.pre_heatmap_conv.weight: copying a param with shape torch.Size([17, 32, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 32, 1, 1]). size mismatch for gfd.pre_heatmap_conv.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpts_relation.kpts_conv_k.weight: copying a param with shape torch.Size([17, 17, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 14, 1, 1]). size mismatch for gfd.dual_relation.kpts_relation.kpts_conv_k.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpts_relation.kpts_conv_q.weight: copying a param with shape torch.Size([17, 17, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 14, 1, 1]). size mismatch for gfd.dual_relation.kpts_relation.kpts_conv_q.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpts_relation.kpts_conv_v.weight: copying a param with shape torch.Size([17, 17, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 14, 1, 1]). size mismatch for gfd.dual_relation.kpts_relation.kpts_conv_v.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpts_relation_2.kpts_conv_k.weight: copying a param with shape torch.Size([17, 17, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 14, 1, 1]). size mismatch for gfd.dual_relation.kpts_relation_2.kpts_conv_k.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpts_relation_2.kpts_conv_q.weight: copying a param with shape torch.Size([17, 17, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 14, 1, 1]). size mismatch for gfd.dual_relation.kpts_relation_2.kpts_conv_q.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpts_relation_2.kpts_conv_v.weight: copying a param with shape torch.Size([17, 17, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 14, 1, 1]). size mismatch for gfd.dual_relation.kpts_relation_2.kpts_conv_v.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.se_block1.fc_layers.0.weight: copying a param with shape torch.Size([3, 49]) from checkpoint, the shape in current model is torch.Size([2, 46]). size mismatch for gfd.dual_relation.se_block1.fc_layers.2.weight: copying a param with shape torch.Size([49, 3]) from checkpoint, the shape in current model is torch.Size([46, 2]). size mismatch for gfd.dual_relation.se_block2.fc_layers.0.weight: copying a param with shape torch.Size([3, 49]) from checkpoint, the shape in current model is torch.Size([2, 46]). size mismatch for gfd.dual_relation.se_block2.fc_layers.2.weight: copying a param with shape torch.Size([49, 3]) from checkpoint, the shape in current model is torch.Size([46, 2]). size mismatch for gfd.dual_relation.ca.fc.0.weight: copying a param with shape torch.Size([3, 49, 1, 1]) from checkpoint, the shape in current model is torch.Size([2, 46, 1, 1]). size mismatch for gfd.dual_relation.ca.fc.2.weight: copying a param with shape torch.Size([49, 3, 1, 1]) from checkpoint, the shape in current model is torch.Size([46, 2, 1, 1]). size mismatch for gfd.dual_relation.inst_kpt_conv.weight: copying a param with shape torch.Size([17, 49, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 46, 1, 1]). size mismatch for gfd.dual_relation.inst_kpt_conv.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpt_inst_conv.weight: copying a param with shape torch.Size([32, 49, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 46, 1, 1]). size mismatch for gfd.dual_relation.feat_fusion_conv.weight: copying a param with shape torch.Size([32, 49, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 46, 1, 1]). ==> Worker 1 Started, responsible for 4000 images Number of params: 29.37M FLOPs: 0.0 GFLOPs DDP is: False num_workers: 8 Process Process-2: Traceback (most recent call last): File "D:\anaconda\envs\dhrnet\lib\multiprocessing\process.py", line 315, in _bootstrap self.run() File "D:\anaconda\envs\dhrnet\lib\multiprocessing\process.py", line 108, in run self._target(*self._args, **self._kwargs) File "D:\dhrnet-multi-pose-estimation\tools\valid.py", line 97, in worker model.load_state_dict(torch.load(model_path, map_location='cpu'), strict=True) File "D:\anaconda\envs\dhrnet\lib\site-packages\torch\nn\modules\module.py", line 2041, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for DHRNet: size mismatch for iia.keypoint_center_conv.weight: copying a param with shape torch.Size([18, 480, 1, 1]) from checkpoint, the shape in current model is torch.Size([15, 480, 1, 1]). size mismatch for iia.keypoint_center_conv.bias: copying a param with shape torch.Size([18]) from checkpoint, the shape in current model is torch.Size([15]). size mismatch for gfd.heatmap_conv.weight: copying a param with shape torch.Size([17, 32, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 32, 1, 1]). size mismatch for gfd.heatmap_conv.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.pre_heatmap_conv.weight: copying a param with shape torch.Size([17, 32, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 32, 1, 1]). size mismatch for gfd.pre_heatmap_conv.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpts_relation.kpts_conv_k.weight: copying a param with shape torch.Size([17, 17, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 14, 1, 1]). size mismatch for gfd.dual_relation.kpts_relation.kpts_conv_k.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpts_relation.kpts_conv_q.weight: copying a param with shape torch.Size([17, 17, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 14, 1, 1]). size mismatch for gfd.dual_relation.kpts_relation.kpts_conv_q.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpts_relation.kpts_conv_v.weight: copying a param with shape torch.Size([17, 17, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 14, 1, 1]). size mismatch for gfd.dual_relation.kpts_relation.kpts_conv_v.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpts_relation_2.kpts_conv_k.weight: copying a param with shape torch.Size([17, 17, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 14, 1, 1]). size mismatch for gfd.dual_relation.kpts_relation_2.kpts_conv_k.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpts_relation_2.kpts_conv_q.weight: copying a param with shape torch.Size([17, 17, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 14, 1, 1]). size mismatch for gfd.dual_relation.kpts_relation_2.kpts_conv_q.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpts_relation_2.kpts_conv_v.weight: copying a param with shape torch.Size([17, 17, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 14, 1, 1]). size mismatch for gfd.dual_relation.kpts_relation_2.kpts_conv_v.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.se_block1.fc_layers.0.weight: copying a param with shape torch.Size([3, 49]) from checkpoint, the shape in current model is torch.Size([2, 46]). size mismatch for gfd.dual_relation.se_block1.fc_layers.2.weight: copying a param with shape torch.Size([49, 3]) from checkpoint, the shape in current model is torch.Size([46, 2]). size mismatch for gfd.dual_relation.se_block2.fc_layers.0.weight: copying a param with shape torch.Size([3, 49]) from checkpoint, the shape in current model is torch.Size([2, 46]). size mismatch for gfd.dual_relation.se_block2.fc_layers.2.weight: copying a param with shape torch.Size([49, 3]) from checkpoint, the shape in current model is torch.Size([46, 2]). size mismatch for gfd.dual_relation.ca.fc.0.weight: copying a param with shape torch.Size([3, 49, 1, 1]) from checkpoint, the shape in current model is torch.Size([2, 46, 1, 1]). size mismatch for gfd.dual_relation.ca.fc.2.weight: copying a param with shape torch.Size([49, 3, 1, 1]) from checkpoint, the shape in current model is torch.Size([46, 2, 1, 1]). size mismatch for gfd.dual_relation.inst_kpt_conv.weight: copying a param with shape torch.Size([17, 49, 1, 1]) from checkpoint, the shape in current model is torch.Size([14, 46, 1, 1]). size mismatch for gfd.dual_relation.inst_kpt_conv.bias: copying a param with shape torch.Size([17]) from checkpoint, the shape in current model is torch.Size([14]). size mismatch for gfd.dual_relation.kpt_inst_conv.weight: copying a param with shape torch.Size([32, 49, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 46, 1, 1]). size mismatch for gfd.dual_relation.feat_fusion_conv.weight: copying a param with shape torch.Size([32, 49, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 46, 1, 1]). Traceback (most recent call last): File "D:\dhrnet-multi-pose-estimation\tools\valid.py", line 227, in <module> main() File "D:\dhrnet-multi-pose-estimation\tools\valid.py", line 210, in main all_preds += pred_queue.get() File "D:\anaconda\envs\dhrnet\lib\multiprocessing\queues.py", line 103, in get res = self._recv_bytes() File "D:\anaconda\envs\dhrnet\lib\multiprocessing\connection.py", line 216, in recv_bytes buf = self._recv_bytes(maxlength) File "D:\anaconda\envs\dhrnet\lib\multiprocessing\connection.py", line 305, in _recv_bytes waitres = _winapi.WaitForMultipleObjects( KeyboardInterrupt ^C 这是为什么
06-17
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值