练习2:逻辑回归

文章介绍了如何利用Logistic回归模型预测学生是否会被大学录取。首先进行了数据可视化,展示考试分数与录取结果的关系。接着实现了Sigmoid函数,然后定义了代价函数和梯度下降法来优化模型。此外,文章还讨论了正则化逻辑回归以防止过拟合,通过添加正则项到代价函数中。最后,展示了如何评估模型的准确性。
部署运行你感兴趣的模型镜像

1 Logistic回归
在该部分练习中,将建立一个逻辑回归模型,用以预测学生能否被大学录取。

假设你是大学某个部门的负责人,你要根据两次考试的结果来决定每个申请人的入学机会。目前已经有了以往申请者的历史数据,并且可以用作逻辑回归的训练集。对于每行数据,都包含对应申请者的两次考试分数和最终的录取结果。

在本次练习中,你需要建立一个分类模型,根据这两次的考试分数来预测申请者的录取结果。

1.1 数据可视化

在这里插入图片描述
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

path = ‘ex2data1.txt’
data = pd.read_csv(path, header=None, names=[‘Exam 1’, ‘Exam 2’, ‘Admitted’])
data.head()
在这里插入图片描述
positive = data[data[‘Admitted’].isin([1])]
negative = data[data[‘Admitted’].isin([0])]

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive[‘Exam 1’], positive[‘Exam 2’], s=50, c=‘b’, marker=‘o’, label=‘Admitted’)
ax.scatter(negative[‘Exam 1’], negative[‘Exam 2’], s=50, c=‘r’, marker=‘x’, label=‘Not Admitted’)
ax.legend()
ax.set_xlabel(‘Exam 1 Score’)
ax.set_ylabel(‘Exam 2 Score’)
plt.show()
在这里插入图片描述
1.2 实现
在前部分练习中所绘制的数据分布图中可以看出,在不同标识的数据点间,有一个较为清晰的决策边界。现在需要实现逻辑回归,并使用逻辑回归来训练模型用以预测分类结果。

1.2.1 Sigmoid函数

您可能感兴趣的与本文相关的镜像

LobeChat

LobeChat

AI应用

LobeChat 是一个开源、高性能的聊天机器人框架。支持语音合成、多模态和可扩展插件系统。支持一键式免费部署私人ChatGPT/LLM 网络应用程序。

评论 4
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值