HDU 1019最小公倍数

本文介绍了一种通过穷举法来寻找多个正整数的最小公倍数的方法,并提供了一个具体的C++实现示例。该算法适用于输入的整数范围在32位整数内的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Least Common Multiple

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 53380 Accepted Submission(s): 20323

Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.

Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 … nm where m is the number of integers in the set and n1 … nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.

Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.

Sample Input
2
3 5 7 15
6 4 10296 936 1287 792 1

Sample Output
105
10296


思路

1、这题也是险过,用了穷举方法,只要清楚一组数据中的最小公倍数肯定是这组数中最大的数的整数倍

代码

#include <iostream>
#include <stdio.h>
using namespace std;
int main()
{
    int h;
    cin>>h;
    while(h--)
    {
        int a[100001]={0};
        cin>>a[0];
        int count=1;
        for(int i=1;i<=a[0];i++)
        {
            cin>>a[i];
            count++;
        }
        int max=a[1];
        int min=a[1];
        for(int i=2;i<count;i++)
        {
            if(max<a[i])
              max=a[i];
            if(min>a[i])
              min=a[i];
        }
        int p;
        for( p=max;;p+=max)
        {
            int opp=0;
            for(int i=1;i<count;i++)
            {
                if(p%a[i]!=0)
                {
                    opp++;
                    break;
                }
            }
            if(opp==0)
                break;
        }
        cout<<p<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值