python keras bert训练Sanders Analytics Twitter Sentiment Corpus

Sanders Analytics Twitter Sentiment Corpus是一个推特情感分析的数据集,用bert 模型训练的效果还不错,好像达到了92.6%,这里把代码分享出来。数据集可从这个网址下载:http://www.keenformatics.com/articles/2015-07/sentiment-analysis-lexicons-and-datasets#sanders

环境

ubuntu 16.04, keras 2.2, tensorflow-gpu, Kashgari

代码

from kashgari.embeddings import BERTEmbedding
from kashgari.tasks.classification import CNNLSTMModel
from kashgari.corpus import SMP2017ECDTClassificationCorpus
import numpy as np
from nltk.tokenize import RegexpTokenizer
import string
import os
import pandas as pd

root_path='./dataset/Sander_TwitterSentiment_Full'

full_dataset = pd.read_csv(os.path.join(root_path,"full_corpus_binary.csv"))
full_dataset.columns = ['label','text']

print(full_dataset.head())

def tokenize (text):
    tokens = [word.strip(string.punctuation) for word in RegexpTokenizer(r'\b[a-zA-Z][a-zA-Z0-9]{1,50}\b').tokenize(text)]
    return tokens

full_dataset['text']=full_dataset['text'].apply(lambda x:tokenize(x))

print(full_dataset.head())

train_data = np.array(full_dataset['text'])#np.ndarray()
train_x=train_data.tolist()

train_data_y = np.array(full_dataset['label'])#np.ndarray()
train_y=train_data_y.tolist()



validation=pd.read_csv(os.path.join(root_path,"test-corpus_binary.csv"))
validation.columns = ['label','text']
validation['text']=validation['text'].apply(lambda x:tokenize(x))
test_data = np.array(validation['text'])#np.ndarray()
test_x=test_data.tolist()
test_data_y = np.array(validation['label'])#np.ndarray()
test_y=test_data_y.tolist()
# train_x=full_dataset['text'].values
# train_y=full_dataset['label'].values
bert_embedding = BERTEmbedding('bert-base-uncased', sequence_length=30)                                   
model = CNNLSTMModel(bert_embedding)

# train_x, train_y = SMP2017ECDTClassificationCorpus.get_classification_data()
model.fit(train_x, train_y, epochs=10,validation_data=(test_x,test_y))
scores=model.evaluate(test_x,test_y)
print("Accuracy:%.2f%%"%(scores[1]*100))

参考文献

[1]. Kashgari. https://github.com/BrikerMan/Kashgari

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农民小飞侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值