Description
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
Note: A leaf is a node with no children.
Example:
Given binary tree [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
return its minimum depth = 2.
分析
题目的意思是:求二叉树的最小深度。
- 用了递归,取返回值中最小的深度+1,如果root的左右结点有一个为空,我们取左右结点的返回值最大值+1(可以带入上面的例子来思考)。
- 如果左右结点都非空,我们取左右结点的最小高度+1。
- -递归的代码很简洁。
C++实现
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int minDepth(TreeNode* root) {
if(!root){
return 0;
}
if(!root->left||!root->right){
return max(minDepth(root->left),minDepth(root->right))+1;
}
return min(minDepth(root->left),minDepth(root->right))+1;
}
};
Python实现
下面是找规律的实现,如果找不到规律就完了。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def minDepth(self, root: Optional[TreeNode]) -> int:
if root is None:
return 0
if not root.left or not root.right:
return max(self.minDepth(root.left),self.minDepth(root.right))+1
return min(self.minDepth(root.left),self.minDepth(root.right))+1
如果找不到规律,那就中规中矩的分情况来写,对于每一个非叶子节点,我们只需要分别计算其左右子树的最小叶子节点深度。这样就将一个大问题转化为了小问题,可以递归地解决该问题。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def minDepth(self, root: Optional[TreeNode]) -> int:
if root is None:
return 0
if not root.left and not root.right:
return 1
min_depth = 2**20
if root.left:
min_depth = min(self.minDepth(root.left),min_depth)
if root.right:
min_depth = min(self.minDepth(root.right),min_depth)
return min_depth+1