COMM1190 Data, Insights and Decisions

TelcomCo客户流失率分析与建议

COMM1190 Data, Insights and Decisions

Assessment 1: Initial report

TelcomCo churn rate project

The General Manager (GM) at TelcomCo is mandated to deliver a customer retention update to the Board of Directors. To prepare, the GM initiated a pilot study led by a junior analyst using sample data on customer service usage patterns.

The junior analyst’s initial findings, documented in a memo (Appendix A), were based on pilot data from July 2024. As a Business Analyst at TelcomCo, you have been asked to conduct a deeper analysis using an expanded dataset to investigate churn rate factors and offer actionable recommendations for improving customer retention. Additionally, the GM raised concerns about the memo’s quality, requiring a revised report.

Appendix A: Analysis of customer pilot data

MEMORANDUM

DATE:  12 September 2024

TO: Board of Directors

RE: Marketing Analytics Report

Introduction

This report presents an initial statistical analysis of customer data from the company’s central database. The dataset includes information on customer demographics, account types, service usage, churn rate rates, and spending patterns. The analysis focuses on pilot data from July 2024 and is structured into four sections: customer demographics, monthly charges, customer satisfaction, and recommendations.

Customer Characteristics

Figure 1 and Table 1 summarise key customer characteristics from the pilot sample, including demographic information and service usage insights.

Figure 1: Customer Characteristics

The gender distribution among customers is evenly split. The average age of the customers is   46.64 years, with an average tenure of 32.25 months. Approximately 75% of customers do not have dependents, and over 60% are not living with a partner.

Figure 2: Age

According to Figure 2, the customer age distribution peaks in the 19-25 age group, with about 15% of customers being senior citizens. The distribution is not symmetrical, indicating a concentration in younger age groups.

Table 1: Customer Characteristics

Statistic

Tenure

Age

Mean

32.25

46.64

Median

29

46

Mode

1

21

Standard Deviation

24.84

19.20

Skewness

0.26

0.38

Range

72

71

Minimum

0

19

Maximum

72

90

After analysing customer characteristics, we explore the financial impact through transaction sales data.

Transaction sales

The monthly charges represent the transaction sales, indicating the amount customers pay for the company’s telecommunications services. Table 2 shows summary statistics for these charges. Based on a sample of 999 customers, the average spending is $66.48, while the median is $74.25, suggesting a negatively skewed distribution. A mode of $19.90 indicates a significant portion of customers pay low charges, possibly reflecting a large group of customers subscribing to lower- tier service packages.

Table 2: Transaction Sales

Statistic

Monthly Charges

Mean

66.48

Standard Error

0.95

Median

74.25

Mode

19.90

Standard Deviation

29.93

Sample Variance

896.07

Kurtosis

-1.20

Skewness

-0.30

Range

97.30

Minimum

18.95

Maximum

116.25

Sum

66,413.50

Count

999

A correlation analysis was conducted, and the results are shown in Table 3. There is a moderate positive correlation between tenure and monthly charges, indicating that customers who stay longer tend to spend more. However, tenure has a weak negative correlation with age, suggesting that age and tenure are not closely related.

Table 3: Correlation Matrix

Variable

Age

Monthly Charges

Tenure

Age

1

0.176

-0.028

Monthly Charges

0.176

1

0.252

Tenure

-0.028

0.252

1

Customer churn rate

The overall churn rate is 25%, as depicted in Figure 3. Figure 4 shows that female customers are slightly more likely to churn rate than male customers. Additionally, Figure 5 reveals that customers not living with a partner are more prone to churn rate, as illustrated by the percent stacked bar chart.

Figure 3: Churn rate

Figure 4: Churn rate by Gender

Figure 5: Churn rate by Living Status

Conclusion

•     A high proportion of customers are in the youngest age bracket, contributing to the lower mean spending than the median.

•     Female customers and those not living with a partner show a higher propensity to churn rate.

•     A positive correlation exists between tenure and monthly spending, indicating that customers who stay longer tend to spend more. TelcomCo can leverage this information to reduce churn rate (e.g., loyalty programs or incentives for long-term customers).

Recommendation

The small pilot dataset limits the reliability of these insights.  More  customer data should be collected to generate a more robust analysis, and additional variables should be explored.

To enhance the reliability of the analysis, TelcomCo should expand the dataset by collecting additional customer data, such as customer engagement metrics, service quality feedback, or payment history.  This  would  enable  more  comprehensive  insights  into  churn  behaviour. Additionally, future analyses should explore new variables like customer satisfaction overtime and the impact of promotional offers. A more extensive analysis could involve segmenting customers by service package or region to tailor retention strategies effectively.

Appendix B: Data dictionary

Variable

Description

CustomerID

Unique identifier for each customer.

Gender

Gender of the customer (Male, Female).

Age

Age of the customer in years (18+).

Partner

Whether the customer lives with a partner (Yes, No).

Dependents

Whether the customer has dependents (Yes, No).

Tenure

Number of months the customer has stayed with the company. For analytical purpose, the tenure can be classified into three broad categories: short-term (<9 months); medium term (between 9 and 18 months) and long-term (greater than 18 months)

InternetService

Type of internet service (Fiber optic, 5G, DSL, No service).

OnlineProtect

Level of online security/back-up (0: None, 1: Security, 2: Backup, 3: Both).

TechSupport

Type of tech support (1: Chatbot, 2: Email, 3: Phone).

Streaming

Streaming subscription status (0: None, 1: TV, 2: Movies, 3: Both).

Outage

Frequency of service outages (Occasional, Frequent).

ContractType

Type of contract (1: Month-to-month, 12: One year, 24: Two year).

MonthlyCharges

Monthly amount charged to the customer.

MultipleLines

Whether the customer has subscribed to more than one phone line (0: no phone line; 1: one phone line and 2: more than one line)

Churn

Whether the customer churns (Yes, No).

Pilot

Indicates whether data is from the pilot study (1: Yes, 0: No).

本指南详细阐述基于Python编程语言结合OpenCV计算机视觉库构建实时眼部状态分析系统的技术流程。该系统能够准确识别眼部区域,并对眨眼动作与持续闭眼状态进行判别。OpenCV作为功能强大的图像处理工具库,配合Python简洁的语法特性与丰富的第三方模块支持,为开发此类视觉应用提供了理想环境。 在环境配置阶段,除基础Python运行环境外,还需安装OpenCV核心模块与dlib机器学习库。dlib库内置的HOG(方向梯度直方图)特征检测算法在面部特征定位方面表现卓越。 技术实现包含以下关键环节: - 面部区域检测:采用预训练的Haar级联分类器或HOG特征检测器完成初始人脸定位,为后续眼部分析建立基础坐标系 - 眼部精确定位:基于已识别的人脸区域,运用dlib提供的面部特征点预测模型准确标定双眼位置坐标 - 眼睑轮廓分析:通过OpenCV的轮廓提取算法精确勾勒眼睑边缘形态,为状态判别提供几何特征依据 - 眨眼动作识别:通过连续帧序列分析眼睑开合度变化,建立动态阈值模型判断瞬时闭合动作 - 持续闭眼检测:设定更严格的状态持续时间与闭合程度双重标准,准确识别长时间闭眼行为 - 实时处理架构:构建视频流处理管线,通过帧捕获、特征分析、状态判断的循环流程实现实时监控 完整的技术文档应包含模块化代码实现、依赖库安装指引、参数调优指南及常见问题解决方案。示例代码需具备完整的错误处理机制与性能优化建议,涵盖图像预处理、光照补偿等实际应用中的关键技术点。 掌握该技术体系不仅有助于深入理解计算机视觉原理,更为疲劳驾驶预警、医疗监护等实际应用场景提供了可靠的技术基础。后续优化方向可包括多模态特征融合、深度学习模型集成等进阶研究领域。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
对不起,我在之前的回答中提到的WM_COMM_READDATA是一个自定义的消息,而不是Windows API中的定义。我混淆了一些概念,对此我感到抱歉。 在C++中,Windows API并没有提供专门用于读取串口数据的消息。通常,你可以使用ReadFile函数来读取串口数据。下面是一个简单的示例代码,演示如何读取串口数据: ```cpp #include <iostream> #include <windows.h> int main() { const char* portName = "COM1"; // 串口名称,根据实际情况修改 // 打开串口 HANDLE hSerial = CreateFile(portName, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL); // 检查串口是否成功打开 if (hSerial == INVALID_HANDLE_VALUE) { // 处理错误 // ... return 1; } // 配置串口参数等操作 // ... // 读取串口数据 char buffer[1024]; // 缓冲区大小,根据实际情况调整 DWORD bytesRead; if (ReadFile(hSerial, buffer, sizeof(buffer), &bytesRead, NULL)) { // 读取成功 std::cout << "Received data: " << std::string(buffer, bytesRead) << std::endl; } else { // 读取失败 // 处理错误 // ... } // 关闭串口 CloseHandle(hSerial); return 0; } ``` 在上述示例中,我们使用CreateFile函数打开指定名称的串口,并获得一个句柄。然后,使用ReadFile函数从串口读取数据到缓冲区中,并检查读取是否成功。如果成功,我们将读取到的数据输出到控制台。最后,使用CloseHandle函数关闭串口句柄。 希望这次能够帮到你,如果还有其他问题,请随时提问。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值