HDF5 notes

killer features

  • hierarchical groups
  • attributes
    • descriptive metadata
  • slicing
    • actural data is on disk, slicing made it red to memroy
  • have control of storage allocated
  • support compression

HDF5

  • large numerical arrays of homogenous type
  • organized hierarchically
  • tagging with arbitrary metadata
  • high performance
  • partial I/O

HDF5 data model

  • dataset: array like objects that sotre numerical data on disk
    • attributes: name, type, shape
    • support random access
  • group: hierarchical containers that store datasets and other groups
    • using B-trees
  • attribute: user defined metadata, can be attached to dataset and group

HDF5 library

  • written in C
  • with C++, Java and Python bindings

read operation

  1. h5py figures out the shape (10, 50) of the resulting array object.
  2. An empty NumPy array is allocated of shape (10, 50).
  3. HDF5 selects the appropriate part of the dataset.
  4. HDF5 copies data from the dataset into the empty NumPy array.
  5. The newly filled in NumPy array is returned.

write operation

  1. h5py figures out the size of the selection, and determines whether it is compatible with the size of the array being assigned.
  2. HDF5 makes an appropriately sized selection on the dataset.
  3. HDF5 reads from the input array and writes to the file.

performance tips

  • reduce read/write on the dataset

reshape

  • can’t change the number of axes

Reference

  1. How to access HDF5 data from Python
  2. HDF5 for Python
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值