HMM training

2 road lines:

  • EM algorithm(Baum-Welch)
  • Gradient Descent

The main advantage of the Baum-Welch algorithm (and hence the ML training) is due to its simplicity and the fact that requires no parameter tuning. Furthermore compared to standard gradient descent, even for ML training, the Baum-Welch algorithm achieves significantly faster convergence rates. On the other hand gradient descent (especially in the case of large models) requires careful search in the parameter space for an appropriate learning rate in order to achieve the best possible performance.

References:

  1. Pantelis G. Bagos, Theodore Liakopoulos, Stavros J. Hamodrakas: Faster Gradient Descent Training of Hidden Markov Models, Using Individual Learning Rate Adaptation. ICGI 2004: 40-52
  2. Baldi, P., Chauvin, Y.: Smooth On-Line Learning Algorithms for Hidden Markov Models. Neural Comput. 6(2) (1994) 305-316
%% Feature Extraction function features = extract_features(file_path) % Read audio file [y, sr] = audioread(file_path); y = resample(y, 16000, sr); % Resample to 16000Hz sr = 16000; frame_length = 512; % Frame length hop_length = 256; % Hop length % Calculate energy (RMS) energy = zeros(1, floor((length(y)-frame_length)/hop_length + 1); for i = 1:length(energy) frame = y((i-1)*hop_length+1 : (i-1)*hop_length+frame_length); energy(i) = sqrt(mean(frame.^2)); end % Calculate zero-crossing rate zcr = zeros(1, floor((length(y)-frame_length)/hop_length + 1)); for i = 1:length(zcr) frame = y((i-1)*hop_length+1 : (i-1)*hop_length+frame_length); zcr(i) = 0.5 * mean(abs(diff(sign(frame)))); end features = [energy; zcr]'; % Output shape: (frames × 2) end %% Step 1: Feature Extraction train_start = cell(1,3); train_stop = cell(1,3); for i = 1:3 train_start{i} = extract_features(sprintf('start_%d.wav', i)); train_stop{i} = extract_features(sprintf('stop_%d.wav', i)); end test_start = extract_features('start_test.wav'); test_stop = extract_features('stop_test.wav'); % Print feature shapes disp(['Training sample shape example: ', num2str(size(train_start{1}))]); %% Step 2: Train HMM Classifiers % Note: MATLAB's HMM functions are different from Python's hmmlearn % You may need Statistics and Machine Learning Toolbox % For 'start' class % In MATLAB, we need to use fitgmdist for Gaussian Mixture Models % and then build HMM manually (simplified version here) % This is a simplified approach as MATLAB doesn't have direct equivalent to hmmlearn % For demonstration, we'll use a simplified approach % In practice, you might need to implement more complete HMM training % Train 'start' model (simplified) start_features = vertcat(train_start{:}); start_gmm = fitgmdist(start_features, 3, 'CovarianceType', 'diagonal', ... 'Options', statset('MaxIter', 10)); % Train 'stop' model (simplified) stop_features = vertcat(train_stop{:}); stop_gmm = fitgmdist(stop_features, 3, 'CovarianceType', 'diagonal', ... 'Options', statset('MaxIter', 10)); disp('Model training completed!'); %% Step 3: Testing function pred = classify(audio_feature, start_gmm, stop_gmm) % Compare log-likelihood scores score_start = sum(log(pdf(start_gmm, audio_feature))); score_stop = sum(log(pdf(stop_gmm, audio_feature))); if score_start > score_stop pred = 'start'; else pred = 'stop'; end end % Test 'start_test.wav' pred_start = classify(test_start, start_gmm, stop_gmm); fprintf('Test sample start_test.wav prediction: %s (should be ''start'')\n', pred_start); % Test 'stop_test.wav' pred_stop = classify(test_stop, start_gmm, stop_gmm); fprintf('Test sample stop_test.wav prediction: %s (should be ''stop'')\n', pred_stop); %% Step 4: Visualize Results % Create results table file_names = {'start_test.wav'; 'stop_test.wav'}; test_data = {test_start; test_stop}; results = table(); for i = 1:2 score_start = sum(log(pdf(start_gmm, test_data{i}))); score_stop = sum(log(pdf(stop_gmm, test_data{i}))); if score_start > score_stop pred = 'start'; else pred = 'stop'; end results.FileName{i} = file_names{i}; results.StartScore(i) = round(score_start, 2); results.StopScore(i) = round(score_stop, 2); results.Prediction{i} = pred; end disp('Classification results comparison:'); disp(results); 帮我修改成用Matlab能实现的代码
05-01
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值